首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum neurotoxins, the most potent of all toxins, induce lethal neuromuscular paralysis by inhibiting exocytosis at the neuromuscular junction. The light chains (LC) of these dichain neurotoxins are a new class of zinc-endopeptidases that specifically cleave the synaptosomal proteins, SNAP-25, VAMP, or syntaxin at discrete sites. To facilitate the structural and functional characterization of these unique endopeptidases, we constructed a synthetic gene for the LC of the botulinum neurotoxin serotype A (BoNT/A), overexpressed it in Escherichia coli, and purified the gene product from inclusion bodies. Our procedure can provide 1.1 g of the LC from 1 L of culture. The LC product was stable in solution at 4°C for at least 6 months. This rBoNT/A LC was proteolytically active, specifically cleaving the Glu-Arg bond in a 17-residue synthetic peptide of SNAP-25, the reported cleavage site of BoNT/A. Its calculated catalytic efficiency k cat/K m was higher than that reported for the native BoNT/A dichain. Treating the rBoNT/A LC with mercuric compounds completely abolished its activity, most probably by modifying the cysteine-164 residue located in the vicinity of the active site. About 70% activity of the LC was restored by adding Zn2+ to a Zn2+-free, apo-LC preparation. The LC was nontoxic to mice and failed to elicit neutralizing epitope(s) when the animals were vaccinated with this protein. In addition, injecting rBoNT/A LC into sea urchin eggs inhibited exocytosis-dependent plasma membrane resealing. For the first time, results of our study make available a large amount of the biologically active toxin fragment in a soluble and stable form.  相似文献   

2.
YOL027c in yeast and LETM1 in humans encode integral proteins of the inner mitochondrial membrane. They have been implicated in mitochondrial K+ homeostasis and volume control. To further characterize their role, we made use of submitochondrial particles (SMPs) with entrapped K+- and H+-sensitive fluorescent dyes PBFI and BCECF, respectively, to study the kinetics of K+ and H+ transport across the yeast inner mitochondrial membrane. Wild-type SMPs exhibited rapid, reciprocal translocations of K+ and H+ driven by concentration gradients of either of them. K+ and H+ translocations have stoichiometries similar to those mediated by the exogenous K+/H+ exchanger nigericin, and they are shown to be essentially electroneutral and obligatorily coupled. Moreover, [K+] gradients move H+ against its concentration gradient, and vice-versa. These features, as well as the sensitivity of K+ and H+ fluxes to quinine and Mg2+, qualify these activities as K+/H+ exchange reactions. Both activities are abolished when the yeast Yol027p protein is absent (yol027Δ mutant SMPs), indicating that it has an essential role in this reaction. The replacement of the yeast Yol027p by the human Letm1 protein restores K+/H+ exchange activity confirming functional homology of the yeast and human proteins. Considering their newly identified function, we propose to refer to the yeast YOL027c gene and the human LETM1 gene as yMKH1 and hMKH1, respectively.  相似文献   

3.
The category A agent, botulinum neurotoxin (BoNT), is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, we have identified three RNA aptamers through SELEX-process, which bind strongly to the light chain of type A BoNT (BoNT/A) and inhibit the endopeptidase activity, with IC50 in low nM range. Inhibition kinetic studies reveal low nM KI and non-competitive nature of their inhibition. Aptamers are unique group of molecules as therapeutics, and this is first report of their development as an antidote against botulism. These data on KI and IC50 strongly suggest that the aptamers have strong potential as antidotes that can reverse the symptom caused by BoNT/A.  相似文献   

4.
KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown. It has been shown that ATP stimulates the activity of KtrAB while ADP does not. Here, we present X-ray structural information on the KtrAB complex with bound ADP. A comparison with the KtrAB-ATP structure reveals conformational changes in the ring and in the membrane protein. In combination with a biochemical and functional analysis, we uncover how ligand-dependent changes in the KtrA ring are propagated to the KtrB membrane protein and conclude that, despite their structural similarity, the activation mechanism of KtrAB is markedly different from the activation mechanism of K+ channels.  相似文献   

5.
The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.  相似文献   

6.
K+ channels are a most diverse class of ion channels in the plasma membrane and are distributed widely throughout a variety of cells including cancer cells. Evidence has been accumulating from fundamental studies indicating that tumour cells possess various types of K+ channels and that these K+ channels play important roles in regulating tumor cell proliferation, cell cycle progression and apoptosis. Moreover, a significant increase in K+ channel expression has been correlated with tumorigenesis, suggesting the possibility of using these proteins as transformation markers and perhaps reducing the tumor growth rate by selectively inhibiting their functional activity. Significant progress has been made in defining the properties of breast K+ channels, including their biophysical and pharmacological properties and distribution throughout different phases of the cell cycle in breast cell line MCF-7. This review aims to provide a comprehensive overview of the current state of research into K+ channels/currents in breast cancer cells. The possible mechanisms by which K+ channels affect tumor cell proliferation and cell cycle progression are discussed.  相似文献   

7.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

8.
ADP is a competitive inhibitor with respect to ATP for pyruvate dehydrogenase kinase. Evidence is presented that K+ or NH4+ ions are required for inhibition of the kinase by ADP. K+ at 30–90 mM and NH4+ at 1–5 mM decrease markedly the apparent Ki of bovine kidney pyruvate dehydrogenase kinase for ADP and also decrease, to a lesser extent, the apparent Km for ATP. Na+ is less effective and, in addition, inhibits kinase activity. Since K+ and NH4+ are not required for kinase activity, their effect appears to be primarily of regulatory significance. K+ and NH4+ have little effect, if any, on pyruvate dehydrogenase phosphatase activity. When both the kinase and the phosphatase are present and functional, the near steady state activity of the pyruvate dehydrogenase complex is affected significantly by varying the concentration of K+ or NH4+ at a fixed ADP/ATP concentration ratio and by varying the ADPATP ratio at a fixed concentration of monovalent cation.  相似文献   

9.
K+-dependent Na+-Ca2+ exchangers (NCKXs) play an important role in Ca2+ homeostasis in many tissues. NCKX proteins are bi-directional plasma membrane Ca2+-transporters which utilize the inward Na+ and outward K+ gradients to move Ca2+ ions into and out of the cytosol (4Na+:1Ca2+ + 1 K+). In this study, we carried out scanning mutagenesis of all the residues of the highly conserved α-1 and α-2 repeats of NCKX2 to identify residues important for K+ transport. These structural elements are thought to be critical for cation transport. Using fluorescent intracellular Ca2+-indicating dyes, we measured the K+ dependence of transport carried out by wildtype or mutant NCKX2 proteins expressed in HEK293 cells and analyzed shifts in the apparent binding affinity (Km) of mutant proteins in comparison with the wildtype exchanger. Of the 93 residue substitutions tested, 34 were found to show a significant shift in the external K+ ion dependence of which 16 showed an increased affinity to K+ ions and 18 showed a decreased affinity and hence are believed to be important for K+ ion binding and transport. We also identified 8 residue substitutions that resulted in a partial loss of K+ dependence. Our biochemical data provide strong support for the cation binding sites identified in a homology model of NCKX2 based on crystal structures reported for distantly related archaeal Na+-Ca2+ exchanger NCX_Mj. In addition, we compare our results here with our previous studies that report on residues important for Ca2+ and Na+ binding. Supported by CIHR MOP-81327.  相似文献   

10.
A quantitative structure–activity relationship (QSAR) study has been made on a new series of digitalis-like Na+,K+-ATPase inhibitors in which the guanylhydrazone group has been replaced by an aminoalkyloxime group. The correlations obtained have shown that the oxime moiety, primary amine group, overall size, and polarizability of the new type of substituents are higly beneficial to the Na+,K+-ATPase inhibition potency of the compounds and that their effect can be quantitatively assessed. The study also showed that the inotropic activity of the compounds is very well correlated with their Na+,K+-ATPase inhibition potency.  相似文献   

11.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

12.
NHX‐type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na+ in vacuoles. However, all isoforms characterized so far catalyze both Na+/H+ and K+/H+ exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K+, which in turn affects plant K+ nutrition and Na+ tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K+ vacuolar pools in all growth conditions tested, but no consistent enhancement of Na+ accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K+ and to withstand salt‐shock. Under K+‐limiting conditions, greater K+ compartmentation in the vacuole occurred at the expense of the cytosolic K+ pool, which was lower in transgenic plants. This caused the early activation of the high‐affinity K+ uptake system, enhanced K+ uptake by roots, and increased the K+ content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H+‐linked K+ transport that is thought to facilitate active K+ uptake at the tonoplast, and the partitioning of K+ between vacuole and cytosol.  相似文献   

13.
Potassium (K+) ion channels are crucial in numerous cellular processes as they hyperpolarise a cell through K+ conductance, returning a cell to its resting potential. K+ channel mutations result in multiple clinical complications such as arrhythmia, neonatal diabetes and migraines. Since 1995, the regulation of K+ channels by phospholipids has been heavily studied using a range of interdisciplinary methods such as cellular electrophysiology, structural biology and computational modelling. As a result, K+ channels are model proteins for the analysis of protein-lipid interactions. In this review, we will focus on the roles of lipids in the regulation of K+ channels, and how atomic-level structures, along with experimental techniques and molecular simulations, have helped guide our understanding of the importance of phospholipid interactions.  相似文献   

14.
Binding to Na+,K+-ATPase, cardiotonic steroids (CTS) activate intracellular signaling cascades that affect gene expression and regulation of proliferation and apoptosis in cells. Ouabain is the main CTS used for studying these processes. The effects of other CTS on nervous tissue are practically uncharacterized. Previously, we have shown that ouabain affects the activation of mitogen-activated protein kinases (MAP kinases) ERK1/2, p38, and JNK. In this study, we compared the effects of digoxin and bufalin, which belong to different subclasses of CTS, on primary culture of rat cortical cells. We found that CTS toxicity is not directly related to the degree of Na+,K+-ATPase inhibition, and that bufalin and digoxin, like ouabain, are capable of activating ERK1/2 and p38, but with different concentration and time profiles. Unlike bufalin and ouabain, digoxin did not decrease JNK activation after long-term incubation. We concluded that the toxic effect of CTS in concentrations that inhibit less than 80% of Na+,K+-ATPase activity is related to ERK1/2 activation as well as the complex profile of MAP kinase activation. A direct correlation between Na+,K+-ATPase inhibition and the degree of MAP kinase activation is only observed for ERK1/2. The different action of the three CTS on JNK and p38 activation may indicate that it is associated with intracellular signaling cascades triggered by protein–protein interactions between Na+,K+-ATPase and various partner proteins. Activation of MAP kinase pathways by these CTS occurs at concentrations that inhibit Na+,K+-ATPase containing the α1 subunit, suggesting that these signaling cascades are realized via α1. The results show that the signaling processes in neurons caused by CTS can differ not only because of different inhibitory constants for Na+,K+-ATPase.  相似文献   

15.
Summary Furosemide-binding proteins were isolated from cholate-solubilized membranes of Ehrlich ascites tumor cells by affinity chromatography, using furosemide as ligand. Solubilized proteins retarded by the affinity material were eluted by furosemide. In reducing and denaturing gels, the major proteins eluted by furosemide were 100 and 45 kDa. In nonreducing, nondenaturing gels, homodimers of both polypeptides were found, whereas no oligomeric proteins containing both polypeptides were seen. It is concluded that the furosemide gel binds two distinct dimeric proteins. The isolated proteins were reconstituted into phospholipid vesicles and the K+ transport activity of these vesicles was assayed by measurement of86Rb+ uptake against a large opposing K+ gradient. The reconstituted system was found to contain a K+ transporting protein, which is sensitive to Ba2+ like the K+ channel previously demonstrated to be activated in intact cells after cell swelling.  相似文献   

16.
Na+/H+ antiporters are involved in ensuring optimal intracellular concentrations of alkali-metal cations and protons in most organisms. In Saccharomyces cerevisiae, the plasma-membrane Na+, K+/H+ antiporter Nha1 mediates Na+ and K+ efflux, which is important for cell growth in the presence of salts. Nha1 belongs among housekeeping proteins and, due to its ability to export K+, it has many physiological functions. The Nha1 transport activity is regulated through its long, hydrophilic and unstructured C-terminus (554 of 985 aa). Although Nha1 has been previously shown to interact with the yeast 14-3-3 isoform (Bmh2), the binding site remains unknown. In this work, we identified the residues through which Nha1 interacts with the 14-3-3 protein. Biophysical characterization of the interaction between the C-terminal polypeptide of Nha1 and Bmh proteins in vitro revealed that the 14-3-3 protein binds to phosphorylated Ser481 of Nha1, and the crystal structure of the phosphopeptide containing Ser481 bound to Bmh1 provided the structural basis of this interaction. Our data indicate that 14-3-3 binding induces a disorder-to-order transition of the C-terminus of Nha1, and in vivo experiments showed that the mutation of Ser481 to Ala significantly increases cation efflux activity via Nha1, which renders cells sensitive to low K+ concentrations. Hence, 14-3-3 binding is apparently essential for the negative regulation of Nha1 activity, which should be low under standard growth conditions, when low amounts of toxic salts are present and yeast cells need to accumulate high amounts of K+.  相似文献   

17.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

18.
Glutamate transport (GluT) in brain is mediated chiefly by two transporters GLT and GLAST, both driven by ionic gradients generated by (Na+, K+)-dependent ATPase (Na+/K+-ATPase). GLAST is located in astrocytes and its function is regulated by translocations from cytoplasm to plasma membrane in the presence of GluT substrates. The phenomenon is blocked by a naturally occurring toxin rottlerin. We have recently suggested that rottlerin acts by inhibiting Na+/K+-ATPase. We now report that Na+/K+-ATPase inhibitors digoxin and ouabain also blocked the redistribution of GLAST in cultured astrocytes, however, neither of the compounds caused detectable inhibition of ATPase activity in cell-free astrocyte homogenates (rottlerin inhibited app. 80% of Pi production from ATP in the astrocyte homogenates, IC50 = 25 μM). Therefore, while we may not have established a direct link between GLAST regulation and Na+/K+-ATPase activity we have shown that both ouabain and digoxin can interfere with GluT transport and therefore should be considered potentially neurotoxic.  相似文献   

19.
Scaffolding growth factor receptor-bound (Grb) adaptor proteins are components of macromolecular signaling complexes at the plasma membrane and thus are putative regulators of ion channel activity. The present study aimed to define the impact of Grb adaptor proteins on the function of cardiac K+ channels. To this end channel proteins were coinjected with the adaptor proteins in Xenopus oocytes and channel activity analyzed with two-electrode voltage-clamp. It is shown that coexpression of Grb adaptor proteins can reduce current amplitudes of coexpressed channels. Grb7 and 10 significantly inhibited functional currents generated by hERG, Kv1.5 and Kv4.3 channels. Only Grb10 significantly inhibited KCNQ1/KCNE1 K+ channels, and only Grb7 reduced Kir2.3 activity, whereas neither Grb protein significantly affected the closely related Kir2.1 and Kir2.2 channels. The present observations for the first time provide evidence for a selective and modulatory role of Grb adaptor proteins in the functional expression of cardiac K+ channels.  相似文献   

20.
Contrary to earlier reports, we have been able to demonstrate the presence of (Na++K+)-activated, ouabain-inhibited ATPase activity in rabbit polymorphonuclear leukocyte membranes. These results coupled with others suggest that (Na++K+)-ATPase and not cation-sensitive phosphatases are responsible for the regulation of the electrolyte content in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号