首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From our research of nonsecosteroidal vitamin D3 derivatives with gamma hydroxy carboxylic acid, we identified compound 6, with two CF3 groups in the side chain, as a most potent vitamin D receptor (VDR) agonist that shows superagonistic activity in VDRE reporter gene assay, MG-63 osteocalcin production assay and HL-60 cell differentiation assay. Compound 6 demonstrated that fluorination is as effective in the case of our nonsecosteroidal scaffold as in the case of secosteroidal VD3 analogs. X-ray analysis of the VDR with compound 6 revealed all of the six fluorine atoms of the hexafluoropropanol (HFP) moiety in the side chain effectively interacting with the VDR by both steric (van der Waals) and electrostatic (hydrogen bond, NH–F and CH–F) interactions. The HFP moiety of 6 effectively interacts with helix 12 (H12) of the VDR and stabilizes the position and the orientation of H12, which could result in stabilizing the coactivator and enhancing the VDR agonistic activity.  相似文献   

2.
Novel vitamin D(3) analogs with carboxylic acid were explored, focusing on a nonsecosteroidal analog, LG190178, with a bisphenyl skeleton. From X-ray analysis of these analogs with vitamin D receptor (VDR), the carboxyl groups had very unique hydrogen bonding interactions in VDR and mimicked 1α-hydroxy group and/or 3β-hydroxy group of 1α,25-dihydroxyvitamin D(3). A highly potent analog, 6a, with good in vitro activity and pharmacokinetic profiles was identified from an SAR study. Compound 6a showed significant prevention of bone loss in a rat osteoporosis model by oral administration.  相似文献   

3.
4.
1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3, also known as calcitriol), the active form of vitamin D3, is being increasingly recognized for cancer therapy. Our previous work showed that phenyl-pyrrolyl pentane analogs, which mimicked anti-proliferative activities against several cancer cell lines of the natural secosteroidal ligand 1,25-(OH)2D3. Here, in order to optimize the structural features and discover more potent derivative, a series of nonsecosteroidal vitamin D3 receptor (VDR) ligands bearing acetylene bond linker was designed, synthesized and evaluated. Most of them showed moderate to good binding affinities and agonistic activities. Especially, compound 19f displayed the most anti-proliferative activities against MCF-7 and PC-3 cells with the IC50 values of 1.80 and 5.35 μM, respectively, which was comparable to positive control 1,25-(OH)2D3. Moreover, compound 19f exhibited reduced toxicity against human normal liver cell line (L02) compared with the parental compound 7. Besides, the preliminary structure–activity relationships (SARs) were also analyzed.  相似文献   

5.
Lithocholic acid (2) was identified as the second endogenous ligand of vitamin D receptor (VDR), though its binding affinity to VDR and its vitamin D activity are very weak compared to those of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1). 3-Acylated lithocholic acids were reported to be slightly more potent than lithocholic acid (2) as VDR agonists. Here, aiming to develop more potent lithocholic acid derivatives, we synthesized several derivatives bearing a 3-sulfonate/carbonate or 3-amino/amide substituent, and examined their differentiation-inducing activity toward human promyelocytic leukemia HL-60 cells. Introduction of a nitrogen atom at the 3-position of lithocholic acid (2) decreased the activity, but compound 6 bearing a 3-methylsulfonate group showed more potent activity than lithocholic acid (2) or its acylated derivatives. The binding of 6 to VDR was confirmed by competitive binding assay and X-ray crystallographic analysis of the complex of VDR ligand-binding domain (LBD) with 6.  相似文献   

6.
Vitamin D receptor (VDR) agonists are well known for their capacity to control calcium metabolism and to regulate growth and differentiation of many cell types. More recently, it has become clear that VDR agonists possess immunoregulatory properties and, in particular, pronounced pro-tolerogenic activities. VDR agonists can act directly on T cells, but DCs appear to be their primary targets. The capacity of VDR agonists to modulate DC and T cell functions is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kappaB that is downregulated by VDR agonists in APCs and in T cells. A potentially very important activity of VDR agonists is their capacity to induce in vitro and in vivo tolerogenic DCs able to enhance CD4+CD25+ suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR agonists in the treatment of Th1-mediated autoimmune diseases, but may also represent a physiologic element in the VDR-mediated regulation of innate and adaptive immune responses.  相似文献   

7.
It has been reported that Vitamin D receptor polymorphisms are associated with osteoporosis, particularly those demonstrated by the BsmI and FokI restriction enzymes. Herein we report the results of a case-control study performed in postmenopausal Mexican women. We studied 65 osteoporotic women (< or = -2.5 SD bone mineral density [BMD] of young normal females) and 57 controls (over 90% > or = -1.5 SD BMD of young normal females. Restriction enzymes BsmI and FokI were used to identify polymorphisms. Odds ratios and their 95% confidence intervals were calculated, and analysis was performed controlling for age as a covariate. The BsmI genotypes revealed a higher frequency of the bb genotype in cases than in controls, contradicting much of the literature that suggests this genotype protects females against osteoporosis. Regarding the FokI genotypes, we were unable to confirm that the FF genotype has a protective effect against osteoporosis. The inconsistencies found in the literature and the results obtained in the present work suggest to us that other genetic and nongenetic factors are involved in the occurrence of osteoporosis, confounding the results of the possible association of osteoporosis and VDR polymorphisms.  相似文献   

8.
A run for a membrane vitamin D receptor.   总被引:9,自引:0,他引:9  
  相似文献   

9.
Starting from compounds previously identified as α1-adrenoceptor antagonists that were also found to bind to the 5-HT1A receptor, in an attempt to separate the two activities, a new series of 5-HT1A receptor agonists was identified and shown to have high potency and/or high selectivity. Of these, compound 13, which combines high selectivity (5-HT1A1 = 151) and good agonist potency (pD2 = 7.82; Emax = 76), was found to be the most interesting.  相似文献   

10.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
Yamada S  Yamamoto K  Masuno H  Choi M 《Steroids》2001,66(3-5):177-187
On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A > G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G > EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand.  相似文献   

13.
In 1981, Chugai Pharmaceutical succeeded in marketing alfacalcidol, a prodrug of calcitriol, as a therapeutic agent for renal osteodystrophy. In 1983, Chugai succeeded in extending the application of alfacalcidol to the treatment of osteoporosis as well. Clinicians in Japan have accepted alfacalcidol as a remedy for osteoporosis. However, the use of calcitriol and its analogs for the treatment of osteoporosis is still controversial. Some misunderstandings exist internationally about the efficacy of the active form of vitamin D for the treatment of osteoporosis. It is important to emphasize that patients with osteoporosis have intestinal calcium malabsorption and dysfunction in renal activation of vitamin D. When massive doses of parent vitamin D were administered to OVX rats, bone mass increased, but surprisingly, many porotic area were observed in the cortical bone. On the other hand, administration of alfacalcidol increased physiological bone without porotic observation. It is necessary to give the active form of vitamin D, D-hormone, with an RDA-equivalent supply of calcium. Alfacalcidol forms physiological strong bones that are hardly fractured by regulating calcium and bone metabolism. We proposed a new vitamin D analog, 2beta (3-hydroxypropoxy)calcitriol [ED-71] as a therapeutic drug for osteoporosis, which is more potent than calcitriol. ED-71 is now being investigated in phase 2 clinical studies in Japan. ED-71 will appear as more improved drugs for osteoporosis until 2010.  相似文献   

14.
The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D(3) (also referred to as 1,25(OH)(2)D(3)) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor was deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC(50) value of 10 μM and 40±14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)(2)D(3). Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D(3) biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC(50) value of 300 nM and 70±11 fold activation in mammalian cell assays. In silico docking analysis of the variant displays a dramatic conformational shift of cholecalciferol in the ligand binding pocket in comparison to the docked analysis of cholecalciferol with wild-type hVDR. This shift is hypothesized to be due to the introduction of two bulkier residues, suggesting that the addition of these bulkier residues introduces molecular interactions between the ligand and receptor, leading to activation with cholecalciferol.  相似文献   

15.
16.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPAR gamma ligands, which include the naturally occurring PG metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), as well as thiazolidinediones, have been shown to have anti-inflammatory activity. The PPAR alpha agonists, gemfibrozil, ciprofibrate, and fenofibrate, have an excellent track history as oral agents used to treat hypertriglyceridemia. In the present study, we demonstrate that these PPAR alpha agonists can increase the production of the Th2 cytokine, IL-4, and suppress proliferation by TCR transgenic T cells specific for the myelin basic protein Ac1-11, as well as reduce NO production by microglia. Oral administration of gemfibrozil and fenofibrate inhibited clinical signs of experimental autoimmune encephalomyelitis. More importantly, gemfibrozil was shown to shift the cytokine secretion of human T cell lines by inhibiting IFN-gamma and promoting IL-4 secretion. These results suggest that PPAR alpha agonists such as gemfibrozil and fenofibrate, may be attractive candidates for use in human inflammatory conditions such as multiple sclerosis.  相似文献   

17.
1α,25-Dihydroxyvitamin D3 upregulates the expression of the receptor activator of nuclear factor kB ligand (RANKL), and downregulates osteoprotegerin (OPG) expression. We tested the effects of polymorphisms in the vitamin D receptor gene (VDR), and OPG gene in rheumatoid arthritis (RA) patients and healthy controls and their relationship to bone mineral density (BMD) and development of osteoporosis. Three hundred and fifty women were evaluated, 200 women having RA and 150 healthy control. The subjects were genotyped for polymorphism at BsmI in VDR and A163G in OPG genes by polymerase chain reaction followed by restriction fragment length polymorphism analysis. BMD was also measured. In A163G, the G allele increased the risk for RA and for the development of osteoporosis. We found a significant association between lower hip (BMD-h) and genotype variants of VDR (BsmI) and OPG A163G in RA patients with osteoporosis. Our results suggested that OPG A163G polymorphism was associated with RA susceptibility and with the development of osteoporosis in these patients. Also, VDR and OPG genes are important candidates for osteoporosis in RA patients.  相似文献   

18.
Structural modification of a series of dual LXRα/β agonists led to the identification of a new class of LXRβ partial agonists. An X-ray co-crystal structure shows that a representative member of this series, pyrrole 5, binds to LXRβ with a reversed orientation compared to 1.  相似文献   

19.
20.
The active form of vitamin D (1,25D3) suppressed the development of animal models of human autoimmune diseases including experimental inflammatory bowel disease (IBD). The vitamin D receptor (VDR) is required for all known biologic effects of vitamin D. Here we show that VDR deficiency (knockout, KO) resulted in severe inflammation of the gastrointestinal tract in two different experimental models of IBD. In the CD45RB transfer model of IBD, CD4+/CD45RBhigh T cells from VDR KO mice induced more severe colitis than wild-type CD4+/CD45RBhigh T cells. The second model of IBD used was the spontaneous colitis that develops in IL-10 KO mice. VDR/IL-10 double KO mice developed accelerated IBD and 100% mortality by 8 wk of age. At 8 wk of age, all of the VDR and IL-10 single KO mice were healthy. Rectal bleeding was observed in every VDR/IL-10 KO mouse. Splenocytes from the VDR/IL-10 double KO mice cells transferred IBD symptoms. The severe IBD in VDR/IL-10 double KO mice is a result of the immune system and not a result of altered calcium homeostasis, or gastrointestinal tract function. The data establishes an essential role for VDR signaling in the regulation of inflammation in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号