首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We report the isolation of the genes encoding the β1 and β2 adrenergic receptors from dog genomic DNA. Sequence analysis of both genes revealed intronless open reading frames of 473 and 415 amino acid residues, receptively. Heterologous expression of both receptors in CHO cells indicated that both receptors are functionally similar to the human homologs. Comparing the dog β1 and β2 adrenergic receptors, the β1 receptor appears to bind to G proteins more tightly than the β2 receptor. Heterologously expressed receptors provide a convenient system for evaluating novel receptor agonists and antagonists.  相似文献   

2.
The existence and function of inositide signaling in the nucleus is well documented and we know that the existence of the inositide cycle inside the nucleus has a biological role. An autonomous lipid-dependent signaling system, independently regulated from its plasma membrane counterpart, acts in the nucleus and modulates cell cycle progression and differentiation.We and others focused on PLCβ1, which is the most extensively investigated PLC isoform in the nuclear compartment. PLCβ1 is a key player in the regulation of nuclear inositol lipid signaling, and, as discussed above, its function could also be involved in nuclear structure because it hydrolyses PtdIns(4,5)P2, a well accepted regulator of chromatin remodelling. The evidence, in a number of patients with myelodysplastic syndromes, that the mono-allelic deletion of PLCβ1 is associated with an increased risk of developing acute myeloid leukemia paves the way for an entirely new field of investigation. Indeed the genetic defect evidenced, in addition to being a useful prognostic tool, also suggests that altered expression of this enzyme could have a role in the pathogenesis of this disease, by causing an imbalance between proliferation and apoptosis. The epigenetics of PLCβ1 expression in MDS has been reviewed as well.  相似文献   

3.
Medium chain β-1-alkylglycosides show interesting mild detergent properties. Therefore, their synthesis and purification have been investigated and improved so as to permit preparation of 50–100 g amounts. Preparatory methods are presented for the already known compounds β-1-octyl-, β-1-nonyl and β-1-decyl-glucose and for the new compounds β-1-undecylglucose and β-1-dodecylmaltose. Some relevant properties such as melting point, optical rotation, critical micelle concentration and NMR-spectra have been determined. They illustrate the suitability of this class of detergents for membrane research.  相似文献   

4.
Enzymatic 5′-monophosphorylation and 5′-phosphatidylation of a number of β-l- and β-d-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5′-hydroxyl group of nucleoside; the second was the phospholipase d (PLD)-catalyzed transphosphatidylation of l-α-lecithin with a series of β-l- and β-d-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some β-l-nucleosides displayed similar or even higher substrate activity compared to the β-d-enantiomers.  相似文献   

5.
6.
7.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   

8.
A particulate enzyme preparation from Phaseolus aureus (mung bean) seedlings catalyzed the synthesis of a water insoluble β-1,3-glucan from UDP-α-d-glucose (UDPG) at high concentrations (0.4~20 mm) and an alkaline insoluble β-1,3 and β-1,4-mixed glucan from UDPG at a low concentration (8.5 µm).

Furthermore, the two kinds of β-glucan synthetases which were investigated with two reaction systems at high and low concentrations of UDPG had different properties in optimal pH, stability of enzyme activity, and metallic ion requirement.  相似文献   

9.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   

10.
Alzheimer’s disease (AD) is a devastating neurodegenerative disease affecting millions of people. β-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form Aβ, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association (ka) measured at 25 °C ranged from a low of 2.42 × 104 M−1 s−1 to the highest value of 8.3 × 105 M−1 s−1. Rate constants of dissociation (kd) ranged from 1.09 × 10−4 s−1 (corresponding to a residence time of close to three hours), to the fastest of 0.028 s−1. Three compounds were selected for further thermodynamic analysis where it was shown that equilibrium binding was enthalpy driven while unfavorable entropy of binding was observed. Structural analysis revealed that upon ligand binding, the BACE-1flap folds down over the bound ligand causing an induced fit. The maximal difference between alpha carbon positions in the open and closed conformations of the flap was over 5 Å. Thus the negative entropy of binding determined using SPR analysis was consistent with an induced fit observed by structural analysis.  相似文献   

11.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   

12.
13.
Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin β1 and β2 chains in various developing fetal organs is already available, a systematic localization of the laminin β1 and β2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin β1 and β2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin β1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin β2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.  相似文献   

14.
β1–3-N-Acetylglucosaminyltransferases (β3GlcNAcTs) and β1–4-galactosyltransferases (β4GalTs) have been broadly used in enzymatic synthesis of N-acetyllactosamine (LacNAc)-containing oligosaccharides and glycoconjugates including poly-LacNAc, and lacto-N-neotetraose (LNnT) found in the milk of human and other mammals. In order to explore oligosaccharides and derivatives that can be synthesized by the combination of β3GlcNAcTs and β4GalTs, donor substrate specificity studies of two bacterial β3GlcNAcTs from Helicobacter pylori (Hpβ3GlcNAcT) and Neisseria meningitidis (NmLgtA), respectively, using a library of 39 sugar nucleotides were carried out. The two β3GlcNAcTs have complementary donor substrate promiscuity and 13 different trisaccharides were produced. They were used to investigate the acceptor substrate specificities of three β4GalTs from Neisseria meningitidis (NmLgtB), Helicobacter pylori (Hpβ4GalT), and bovine (Bβ4GalT), respectively. Ten of the 13 trisaccharides were shown to be tolerable acceptors for at least one of these β4GalTs. The application of NmLgtA in one-pot multienzyme (OPME) synthesis of two trisaccharides including GalNAcβ1–3Galβ1–4GlcβProN3 and Galβ1–3Galβ1–4Glc was demonstrated. The study provides important information for using these glycosyltransferases as powerful catalysts in enzymatic and chemoenzymatic syntheses of oligosaccharides and derivatives which can be useful probes and reagents.  相似文献   

15.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

16.
Rap1GAP is a GTPase-activating protein (GAP) that specifically stimulates the GTP hydrolysis of Rap1 GTPase. Although Rap1GAP is recognized as a tumor suppressor gene and downregulated in various cancers, little is known regarding the regulation of Rap1GAP ubiquitination and degradation under physiological conditions. Here, we demonstrated that Rap1GAP is ubiquitinated and degraded through proteasome pathway in mitosis. Proteolysis of Rap1GAP requires the PLK1 kinase and β-TrCP ubiquitin ligase complex. We revealed that PLK1 interacts with Rap1GAP in vivo through recognition of an SSP motif within Rap1GAP. PLK1 phosphorylates Ser525 in conserved 524DSGHVS529 degron of Rap1GAP and promotes its interaction with β-TrCP. We also showed that Rap1GAP was a cell cycle regulator and that tight regulation of the Rap1GAP degradation in mitosis is required for cell proliferation.  相似文献   

17.
β-Glucosidase and β-galactosidase activity profile tested in different seeds during 24 h germination revealed reasonably high levels of activity inVigna radiata, Cicer arietinum, andTrigonella foenum-graecum. In all seeds tested, β-galactosidase activity was, in general, higher than that of β-glucosidase.T. foenum-graecum seedlings exhibited maximal total and specific activities for both the enzymes during 72 h germination. Se supplementation as Na2SeO3 up to 0.75 ppm was found to be beneficial to growth and revealed selective enhancement of β-galactosidase activity by 40% at 0.5 ppm Se. The activities of both the enzymes drastically decreased at 1.0 ppm level of Se supplementation. On the contrary, addition of Na2SeO3 in vitro up to 1 ppm to the enzyme extracts did not influence these activities. Hydrolytic rates of β-glucosidase in both control and Se-supplemented groups were enhanced by 20% with 0.05M glycerol in the medium and 30% at 0.1M glycerol. The rates were marginally higher in Se-supplemented seedlings than the controls, irrespective of added glycerol in the medium. In contrast, hydrolysis by β-galactosidase showed a trend of decrease in Se-supplemented seedlings compared to the control, when glycerol was present in the medium. Addition of Se in vitro in the assay medium showed no difference in the hydrolytic rate by β-galactosidase when compared to control, while the activity of β-glucosidase declined by 50%. Se-grown seedlings showed an enhancement of transglucosidation rate by 40% in the presence of 0.1M glycerol. The study reveals a differential response to Se among the β-galactosidase and β-glucosidase ofT. foenumgraecum with increase in the levels of β-galactosidase activity.  相似文献   

18.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   

19.
Radial sorting allows the segregation of axons by a single Schwann cell (SC) and is a prerequisite for myelination during peripheral nerve development. Radial sorting is impaired in models of human diseases, congenital muscular dystrophy (MDC) 1A, MDC1D and Fukuyama, owing to loss-of-function mutations in the genes coding for laminin α2, Large or fukutin glycosyltransferases, respectively. It is not clear which receptor(s) are activated by laminin 211, or glycosylated by Large and fukutin during sorting. Candidates are αβ1 integrins, because their absence phenocopies laminin and glycosyltransferase deficiency, but the topography of the phenotypes is different and β1 integrins are not substrates for Large and fukutin. By contrast, deletion of the Large and fukutin substrate dystroglycan does not result in radial sorting defects. Here, we show that absence of dystroglycan in a specific genetic background causes sorting defects with topography identical to that of laminin 211 mutants, and recapitulating the MDC1A, MDC1D and Fukuyama phenotypes. By epistasis studies in mice lacking one or both receptors in SCs, we show that only absence of β1 integrins impairs proliferation and survival, and arrests radial sorting at early stages, that β1 integrins and dystroglycan activate different pathways, and that the absence of both molecules is synergistic. Thus, the function of dystroglycan and β1 integrins is not redundant, but is sequential. These data identify dystroglycan as a functional laminin 211 receptor during axonal sorting and the key substrate relevant to the pathogenesis of glycosyltransferase congenital muscular dystrophies.  相似文献   

20.
 Intravascular adhesion of leucocytes plays a role in the pathogenesis of acute and chronic vascular disease. Regular aerobic exercise seems to protect against vascular disease. Since leucocyte adhesion is mediated by integrins, we tested the hypothesis that surface expression of the integrin adhesive receptors LFA-1 (cd11a/cd18), MAC-1 (cd11b/cd18), gp 150/95 (cd11c/cd18), and VLA-4 (cd29/cd49) is decreased by moderate endurance exercise. Surface expression of integrins was measured by FACS analysis in 19 healthy subjects (16 males, 3 females, 36.6 ± 8.7 years, 177.1 ± 7.5 cm, 70.3 ± 8.1 kg) before and after submaximal exercise (3 h run) using monoclonal antibodies against cd11a, cd11b, cd11c, cd18, cd29 and cd49. In addition, we compared resting integrin expression in this group with a group of sedentary subjects (19 males, 6 females, 29.3 ± 5.3 years). White blood cell count increased from 5300 ml–1 to 9740 ml–1 during exercise (P<0.001). Nevertheless, the expression (indicated by the mean log fluorescence) of cd11a (94 ± 24 vs. 78 ± 14) and cd18 (128 ± 31 vs. 102 ± 21) on lymphocytes and of cd11a (104 ± 25 vs. 85 ± 16), cd11c (497 ± 171 vs. 408 ± 126) cd29 (109 ± 16 vs. 89 ± 16), cd49 (69± 8 vs. 54 ± 11) on monocytes was decreased after exercise (all P<0.05). In contrast, integrin expression on granulocytes was not altered by exercise. Comparison of exercising and sedentary subjects showed a significantly decreased expression of integrins in exercising subjects. Our results demonstrate that moderate exercise leads to decreased expression of integrin receptors on leucocytes. This decreased expression of adhesion molecules may result in decreased adhesion and infiltration of leucocytes into the vessel wall. This phenomenon may play a role in the beneficial effect of moderate exercise in prevention of acute and chronic vascular disease. Accepted: 18 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号