首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
A novel class of human β3-adrenergic receptor agonists was designed in effort to improve selectivity and metabolic stability versus previous disclosed β3-AR agonists. As observed, many of the β3-AR agonists seem to need the acyclic ethanolamine core for agonist activity. We have synthesized derivatives that constrained this moiety by introduction of a pyrrolidine. This unique modification maintains human β3 functional potency with improved selectivity versus ancillary targets and also eliminates the possibility of the same oxidative metabolites formed from cleavage of the N-C bond of the ethanolamine. Compound 39 exhibited excellent functional β3 agonist potency across species with good pharmacokinetic properties in rat, dog, and rhesus monkeys. Early de-risking of this novel pyrrolidine core (44) via full AMES study supports further research into various new β3-AR agonists containing the pyrrolidine moiety.  相似文献   

3.
A series of benzofuran derivatives were prepared to study their antagonistic activities to the A2A receptor. Replacement of the ester group of the lead compound 1 with phenyl ring improved the PK profile, while modifications of the amide moiety showed enhanced antagonistic activity. From these studies, compounds 13c, 13f, and 24a showed good potency in vitro and were identified as novel A2A receptor antagonists suitable for oral activity evaluation in animal models of catalepsy.  相似文献   

4.
The estrogen receptor beta (ERβ) selective agonist is considered a promising candidate for the treatment of estrogen deficiency symptoms in ERβ-expressing tissues, without the risk of breast cancer, and multiple classes of compounds have been reported as ERβ selective agonists. Among them, 6-6 bicyclic ring-containing structures (e.g., isoflavone phytoestrogens) are regarded as one of the cyclized analogues of isobutestrol 5b, and suggest that other cyclized scaffolds comprising 5-6 bicyclic rings could also act as selective ERβ ligands. In this study, we evaluated the selective ERβ agonistic activity of 1-(4-hydroxybenzyl)indan-5-ol 7a and studied structure–activity relationship (SAR) of its derivatives. Some functional groups improved the properties of 7a; introduction of a nitrile group on the indane-1-position resulted in higher selectivity for ERβ (12a), and further substitution with a fluoro or a methyl group to the pendant phenyl ring was also preferable (12b, d, and e). Subsequent chiral resolution of 12a identified that R-12a has a superior profile over S-12a. This is comparable to diarylpropionitrile (DPN) 5c, one of the promising selective ERβ agonists and indicates that this indane-based scaffold has the potential to provide better ERβ agonistic probes.  相似文献   

5.
Based on the previously reported lead compound, a series of benzofuran derivatives were prepared to study their antagonistic activities to A2A receptor. The replacement of the phenyl group at the 4-position with a heterocyclic ring improved the PK profile and aqueous solubility. From these studies, we discovered a potent new A2A antagonist, 12a, which has both a good oral bioavailability and in vivo efficacy on motor disability in MPTP-treated common marmosets.  相似文献   

6.
7.
We previously identified KCA-1490 [(?)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model.  相似文献   

8.
Synthesis and structure–activity relationship studies of a series of 4-aminoquinazoline derivatives led to the identification of (1R,2S)-17, N-[(1R,2S)-2-({2-[(4-chlorophenyl)carbonyl]amino-6-methylquinazolin-4-yl}amino)cyclohexyl]guanidine dihydrochloride, as a highly potent ORL1 antagonist with up to 3000-fold selectivity over the μ, δ, and κ opioid receptors. Molecular modeling clarified the structural factors contributing to the high affinity and selectivity of (1R,2S)-17.  相似文献   

9.
Glucagon receptor antagonists possess a great potential for treatment of type 2 diabetes mellitus. A series of pyrazole-containing derivatives were designed, synthesized and evaluated by biological assays as glucagon receptor antagonists. Most of the compounds exhibited good in vitro efficacy. Two of them, compounds 17f and 17k, displayed relatively potent antagonist effects on glucagon receptors with IC50 values of 3.9 and 3.6 μM, respectively. The possible binding modes of 17f and 17k with the cognate receptor were explored by molecular docking simulation.  相似文献   

10.
Herein we describe the design, synthesis, and structure–activity relationships (SARs) of a novel phenylcyclopropane series represented by 7 and 33b as antagonists of orexin 1 and orexin 2 receptors. With 4 serving as the initial lead for the development of orexin antagonists, exploration of SAR resulted in improved binding affinity for orexin 1 and orexin 2 receptors. Among the synthesized compounds, 33b ((−)-N-(5-cyanopyridin-2-yl)-2-[(3,4-dimethoxyphenyl)oxymethyl]-2-phenylcyclopropanecarboxamide) exhibited potent in vitro activity and oral efficacy in animal sleep measurement experiments. The results of our study suggest that compound 33b may serve as a valuable template for the development of new orexin receptor antagonists.  相似文献   

11.
The neonatal Fc receptor, FcRn, prolongs the half-life of IgG in the serum and represents a potential therapeutic target for the treatment of autoimmune disease. Small molecules that block the protein–protein interactions of human IgG–human FcRn may lower pathogenic autoantibodies and provide effective treatment. A novel class of quinoxalines has been discovered as antagonists of the IgG:FcRn protein–protein interaction through optimization of a hit derived from a virtual ligand-based screen.  相似文献   

12.
A series of 2-(3-aminopiperidine)-benzimidazoles were identified as selective H1-antihistamines for evaluation as potential sedative hypnotics. Representative compounds showed improved hERG selectivity over a previously identified 2-aminobenzimidazole series. While hERG activity could be modulated via manipulation of the benzimidazole N1 substituent, this approach led to a reduction in CNS exposure for the more selective compounds. One example, 9q, retained a suitable selectivity profile with CNS exposure equivalent to known centrally active H1-antihistamines.  相似文献   

13.
The α-iminoamide derivative, 4b was designed and synthesized as a novel agonist selective for the opioid κ receptor. The amide was constrained to an orientation horizontal to the F-ring of the azabicyclo[2.2.2]octane skeleton, which remarkably improved its affinity, selectivity, and agonistic activity for the κ receptor. This finding was newly established by chemical modification of the nitrogen atom at the 8-position in the azabicyclo[2.2.2]octane skeleton. This modification would never have been found with KNT-63, a derivation of oxabicyclo[2.2.2]octane. These results may provide valuable information for the future development of novel κ selective agonists.  相似文献   

14.
The synthesis and follow-up SAR studies of our development candidate 1 by incorporating 2-aryl-4-oxazolylmethoxy and 2-aryl-4-thiazolylmethoxy moieties into the oxybenzylglycine framework of the PPARα/γ dual agonist muraglitazar is described. SAR studies indicate that different substituents on the aryloxazole/thiazole moieties as well as the choice of carbamate substituent on the glycine moiety can significantly modulate the selectivity of PPARα versus PPARγ. Potent, highly selective PPARα activators 2a and 2l, as well as PPARα activators with significant PPARγ activity, such as 2s, were identified. The in vivo pharmacology of these compounds in preclinical animal models as well as their ADME profiles are discussed.  相似文献   

15.
Neuropathic pain is a serious chronic disorder caused by lesion or dysfunction in the nervous systems. Endogenous nociceptin/orphanin FQ (N/OFQ) peptide and N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor] are located in the central and peripheral nervous systems, the immune systems, and peripheral organs, and have a crucial role in the pain sensory system. Indeed, peripheral or intrathecal N/OFQ has displayed antinociceptive activities in neuropathic pain models, and inhibitory effects on pain-related neurotransmitter releases and on synaptic transmissions of C- and Aδ-fibers. In this study, design, synthesis, and structure–activity relationships of peripheral/spinal cord-targeting non-peptide NOP receptor agonist were investigated for the treatment of neuropathic pain, which resulted in the discovery of highly selective and potent novel NOP receptor full agonist {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol 1 (HPCOM) as systemically (subcutaneously) potent new-class analgesic. Thus, 1 demonstrates dose-dependent inhibitory effect against mechanical allodynia in chronic constriction injury-induced neuropathic pain model rats, robust metabolic stability and little hERG potassium ion channel binding affinity, with its unique and potentially safe profiles and mechanisms, which were distinctive from those of N/OFQ in terms of site-differential effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号