首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Insect Biochemistry》1990,20(6):619-623
An α-glucosidase from the adult salivary glands of the vector mosquito, Aedes aegypti, was characterized. The α-glucosidase is a soluble glycoprotein with Mr 68,000 that is secreted when mosquitoes take a sugar meal. Total activity in the salivary glands is equal between males and females with 82% of the activity in female glands being present in the proximal-lateral lobes. The characteristics of the α-glucosidase correlate well with the putative protein encoded by the Maltase-like I gene. The α-glucosidase is most likely involved in sugar digestion.  相似文献   

2.
Three distinct types of Tc1‐family transposable elements have been identified in the malaria vector, Anopheles gambiae. These three elements, named Tsessebe, Topi and Tiang, have the potential to encode transposases that retain most of the conserved amino acids that are characteristic of this transposon family. However, all three are diverged from each other by more than 50% at the nucleotide level. Full‐length genomic clones of two types, Topi and Tsessebe, have been isolated and fully sequenced. The third, Tiang, is represented only by a 270 bp, PCR‐amplified fragment of the transposase coding region. The Topi and Tsessebe elements are 1.4 kb and 2.0 kb in length, respectively, and differ in the length of their inverted terminal repeats (ITRs). The Topi elements have 26 bp ITRs, whereas the Tsessebe clones have long ITRs ranging in length from 105 to 209 bp, with the consensus being about 180 bp. This difference is due primarily to variation in the length of an internal stretch of GT repeats. The copy number and location of these elements in ovarian nurse cell polytene chromosomes varies greatly between element subtypes: Topi elements are found at between 17–31 sites, Tsessebe at 9–13 and at 20 euchromatic sites, in addition to several copies of these elements in heterochromatic DNA. The copy number and genomic insertion sites of these transposons varies between A.gambiae strains and between member species of the A.gambiae complex. This may be indicative of transpositionally active Tc1‐like elements within the genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Summary The -amylase gene of Bacillus amyloliquefaciens was integrated into the genome of Bacillus subtilis by homologous recombination. In the first transformation step, several strains were obtained carrying the -amylase gene as two randomly located copies. These strains produced -amylase in the quantities comparable with that of the multicopy plasmid pKTH10, carrying the same -amylase gene. With the plasmid system, however, the rate of the -amylase synthesis was faster and the production phase shorter than those of the chromosomally encoded -amylase. The two chromosomal gene copies were further multiplied either by amplification using increasing antibiotic concentration as the selective pressure or by performing a second transformation step, identical to the first integration procedure. Both methods resulted in integration strains carrying up to eight -amylase gene copies per one genome and producing up to eightfold higher -amylase activity than the parental strains. Six out of seven transformants, studied in more detail, were stable after growth of 42 h even without antibiotic selection. The number of the DNA and mRNA copies of the -amylase gene was quantitavely determined by sandwich hybridization techniques, directly from culture medium.  相似文献   

5.
We have introduced the α-amylase gene from Bacillus licheniformis (amy gene) in a non-replicative plasmid which can be conveniently integrated and amplified at a specific site of the B. subtilis chromosome. Although we were able to select spontaneous and stable gene amplification of about 20 integrated copies, the amylase secretion remained very low. A DNA fragment presenting a high promoter activity in B. subtilis was therefore inserted upstream from the amy gene coding sequence, leading to a significant increase of amylase production. However, the amplified structures obtained with this construction were found to contain no more than 12 copies of the amy gene and to be rather unstable when cells were grown under non-selective conditions.  相似文献   

6.
7.
Insecticidal crystal (Cry) proteins of Bacillus thuringiensis crystallize after synthesis forming large inclusions that stabilize these toxins in the environment after cell lysis until eaten by an insect. Despite the biological importance of crystallization, little is known about the structural elements of Cry molecules that facilitate this process. We identified subdomains that affect Cry3A structure possibly through improper folding by chimeric-scanning mutagenesis, substituting short peptides of a truncated 70-kDa Cry1C molecule that does not crystallize into Cry3A, a wild-type 70-kDa molecule that crystallizes readily. Cry3A consists of three domains that contain five different blocks of conserved amino acids. Domain substitution and mutagenesis within these blocks suggested that the specific structure of block 2, which spans the junction between domains I and II, was important to the relative stability of Cry3A and subsequent crystallization. Amino acid sequences of particular importance to stability in Cry3A block 2 were identified using three substitution mutants, each spanning about a third of this block. One that consisted of Cry1C helix α7 yielded no detectable protein, whereas the other two produced characteristic Cry3A crystals. Specific mutations in this region showed tyrosine 268 was critical to normal stability of Cry3A and subsequent crystallization in that a mutant, 268L, was less stable than wild-type Cry3A and failed to form a characteristic Cry3A crystal. Circular dichroism analysis showed a decrease in this mutant’s α-helicity, indicating the importance of tyrosine 268 to the specific conformation of helix α7 that facilitates stability and normal crystallization.  相似文献   

8.
Spices are appreciated for their medicinal properties besides their use as food adjuncts to enhance the sensory quality of food. In this study, Crocus cancellatus subsp. damascenus was investigated for its antioxidant activities employing different in vitro systems. Stigma extract demonstrated a radical scavenging activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals with IC50 values of 34.6 and 21.6?µg/mL and a good ferric reducing ability (53.9?µM Fe(II)/g). In order to clarify the potential functional properties of this spice, the carbohydrate-hydrolysing enzymes and pancreatic lipase inhibitory properties were investigated. Crocus cancellatus subsp. damascenus extract inhibited α-amylase and α-glucosidase with IC50 values of 57.1 and 68.6?µg/mL, respectively. The bioactivity was discussed in terms of phytochemicals content. The obtained results may be of interest from a functional point of view or as food additive and to promote the revalorization of this species.  相似文献   

9.
Bacillus thuringiensis subsp. tenebrionis produces a 65 kilodalton polypeptide toxin which is lethal to various coleopteran insect larvae. The gene encoding this toxin was cloned in E. coli in the broad host range vector pKT230 and subsequently transferred to Rhizobium leguminosarum by conjugation. Western blot analysis showed that the toxin gene was expressed in the free living state of Rhizobium producing two major polypeptides of 73 and 68 kilodalton in size. The level of expression of the toxin gene in Rhizobium varied from strain to strain. Cell extracts from toxin-producing rhizobia were toxic to larvae of Gasterophysa viridula. Bioassays also showed that the -endotoxin was toxic to larvae of the clover weevil Sitona lepidus. Furthermore, pea (Pisum sativum) and white clover (Trifolium repens) plants suffered less root and nodule damage by Sitona larvae when they were inoculated with Rhizobium strains containing the toxin gene. This suggests that such rhizobia could be useful in the biological control of this important legume pest.Abbreviations B.t.t. Bacillus thuringiensis subsp. tenebrionis - IPTG isopropyl--D-thiogalactoside  相似文献   

10.
Qin Y  Fang Z  Pan F  Zhao Y  Li H  Wu H  Meng X 《Biotechnology letters》2012,34(5):895-899
The calcium-binding residues, Tyr302 and His235, and the sodium-binding residue, Asp194, on the activity of Bacillus licheniformis α-amylase were investigated using site-directed mutagenesis. Tyr302 and His235 were replaced by Asn and Asp, respectively, to produce the mutants Y302N and H235D; Asp194 was replaced by Ala to produce D194A. The mutant amylases were purified to homogeneity; each was ~53?kDa. The specific activity of the D194A was 236?U?mg(-1), lower than the specific activity of the wild-type enzyme by 55%. No significant changes of thermostability, optimum temperature, and optimum pH level were observed in D194A. Mutant amylases with H235D and Y302N significantly improved their specific activity by 43% (754?U?mg(-1)) and 7% (563?U?mg(-1)), respectively, compared with the wild-type enzyme. H235D substitution decreased its optimum pH by approx. 0.5-1 pH unit.  相似文献   

11.
Helix α4 of Bacillus thuringiensis Cry toxins is thought to play a critical role in the toxins'' mode of action. Accordingly, single-site substitutions of many Cry1Aa helix α4 amino acid residues have previously been shown to cause substantial reductions in the protein''s pore-forming activity. Changes in protein structure and formation of intermolecular disulfide bonds were investigated as possible factors responsible for the inactivity of these mutants. Incubation of each mutant with trypsin and chymotrypsin for 12 h did not reveal overt structural differences with Cry1Aa, although circular dichroism was slightly decreased in the 190- to 210-nm region for the I132C, S139C, and V150C mutants. The addition of dithiothreitol stimulated pore formation by the E128C, I132C, S139C, T142C, I145C, P146C, and V150C mutants. However, in the presence of these mutants, the membrane permeability never reached that measured for Cry1Aa, indicating that the formation of disulfide bridges could only partially explain their loss of activity. The ability of a number of inactive mutants to compete with wild-type Cry1Aa for pore formation in brush border membrane vesicles isolated from Manduca sexta was also investigated with an osmotic swelling assay. With the exception of the L147C mutant, all mutants tested could inhibit the formation of pores by Cry1Aa, indicating that they retained receptor binding ability. These results strongly suggest that helix α4 is involved mainly in the postbinding steps of pore formation.During the last few decades, the insecticidal toxins produced by Bacillus thuringiensis have been used increasingly in the forms of formulated sprays and transgenic plants for the highly focused biological control of insect pests (29). At the same time, the mechanism by which these proteins form pores in the apical membrane of midgut epithelial cells of targeted insects has been studied extensively (7, 29). In the case of the three-domain Cry toxins, specificity is mostly attributable to their capacity to bind to certain proteins located on the surface of the intestinal membrane through specific segments of domains II and III, composed mainly of β sheets (16, 27). On the other hand, membrane insertion and pore formation are thought to occur through elements of domain I, composed of a bundle of six amphipathic α-helices surrounding the highly hydrophobic helix α5 (17, 20).Several lines of evidence indicate that helices α4 and α5 play a particularly important role in these processes (3). Spectroscopic studies with synthetic peptides corresponding to domain I helices revealed that α4 and α5 have the greatest propensity for insertion into artificial membranes, although insertion and pore formation were most efficient when α4 and α5 were connected by a segment corresponding to the α4-α5 loop of the toxin (13, 14). A particularly large number of single-site mutations with altered amino acids from these helices, which lead to a strong reduction in the toxicity and pore-forming ability of the toxin, have been characterized (2, 9, 10, 15, 18, 23, 25, 30, 31, 33). Finally, a site-directed chemical modification study has provided strong evidence that α4 lines the lumens of the pores formed by the toxin (23).Recent studies have established that toxin activity is especially sensitive to modifications not only in the charged residues of α4 (31) but in most of its hydrophilic residues (15). Furthermore, the loss of activity of most of these mutants did not result from an altered selectivity or size of the pores but from a reduced pore-forming capacity of the toxin (15, 31). In order to better understand the role of α4 in the mechanism of pore formation, the present study was carried out with a series of previously characterized Cry1Aa mutants in which most of the residues from this helix were replaced by cysteines (15). By subjecting these mutants to circular dichroism (CD), protease sensitivity, pore formation inhibition, and electrophoretic mobility analyses, our data suggest that the mutations in α4 which alter the pore-forming ability of Cry1Aa do so mainly by preventing the proper oligomerization or membrane insertion of the toxin.  相似文献   

12.
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.  相似文献   

13.
Islands are choice settings for experimental studies of vector control strategies based on transgenic insects. Before considering this approach, knowledge of the population structure of the vector is essential. Genetic variation at 12 microsatellite loci was therefore studied in samples of the malaria vector Anopheles gambiae s.s., collected from six localities of S?o Tomé island (West Africa). The objectives were (i) to assess the demographic stability and effective population size of A. gambiae from these sites, (ii) to determine population differentiation and (iii) to relate the observed patterns of population structure with geographic, ecological and historical aspects of the vector on the island. Significant population differentiation, revealed by FST and RST statistics, was found between the southernmost site, Porto Alegre, and northern localities. The observed patterns of population substructure are probably a result of restrictions to gene flow in the less inhabited, more densely forested and mountainous south. In all localities surveyed, A. gambiae appeared to be experiencing a demographic expansion, consistent with a relatively recent (ca. 500 years) founder effect. The results are discussed with respect to current and future prospects of malaria vector control.  相似文献   

14.
We investigated the fitness consequences of specialization in an organism whose host choice has an immense impact on human health: the African malaria vector Anopheles gambiae s.s. We tested whether this mosquito’s specialism on humans can be attributed to the relative fitness benefits of specialist vs. generalist feeding strategies by contrasting their fecundity and survival on human‐only and mixed host diets consisting of blood meals from humans and animals. When given only one blood meal, An. gambiae s.s. survived significantly longer on human and bovine blood, than on canine or avian blood. However, when blood fed repeatedly, there was no evidence that the fitness of An. gambiae s.s. fed a human‐only diet was greater than those fed generalist diets. This suggests that the adoption of generalist host feeding strategies in An. gambiae s.s. is not constrained by intraspecific variation in the resource quality of blood from other available host species.  相似文献   

15.
α7 nicotinic receptors are highly permeable to Ca2+ as well as monovalent cations. We extended the characterization of the Ca2+ permeation of non-desensitizing chick α7 receptors (S240T/L247T α7 nAChRs) expressed in Xenopus oocytes by (1) measuring the concentration dependence of conductance under conditions in which Ca2+ or Ba2+ were the only permeant cations in the extracellular solution, and (2) measuring the concentration dependence of Ca2+ block of K+ currents through the receptors. The first set of experiments yielded an apparent affinity of 0.96 mM Ca2+ activity (2.4 mM concentration) for Ca2+ permeation and an apparent affinity of 0.65 mM Ba2+ activity (1.7 mM concentration) for Ba2+ permeation. The apparent affinity of Ca2+ inhibition of K+ currents was 0.49 mM activity (1.5 mM concentration). The similarity of these apparent affinities in the millimolar range suggests that the pore of α7 receptors has one or more low-affinity Ca2+ binding sites and no high-affinity sites.  相似文献   

16.
This study reports the purification and biochemical characterization of a raw starch-digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. (strain PizzoT). The molecular weight was estimated to be 58 kDa by SDS–PAGE. The enzyme was highly active over a wide range of pH from 4.0–10.0. The optimum temperature of the enzyme was 70°C. It showed extreme thermostability in the presence of Ca2+, retaining 50% of its initial activity after 90 h at 70°C. The enzyme efficiently hydrolyzed 20% (w/v) of raw starches, concentration normally used in starch industries. The α-amylase showed an high stability in presence of many organic solvents. In particular the residual activity was of 73% in presence of 15% (v/v) ethyl alcohol, which corresponds to ethanol yield in yeast fermentation process. By analyzing its complete amyA gene sequence (1,542 bp), the enzyme was proposed to be a new α-amylase.  相似文献   

17.
The purpose of this study was to employ the Salmonella/microsomal assay (Ames test) to investigate the mutagenic potential of a thermostable exotoxin of Bacillus thuringiensis subsp. morrisoni. Bacteria are ideal for the detection of infrequently occurring point mutations because the large number of organisms (200 to 400 million bacteria per plate) exposed to the mutagen at any one time increases the possibility of observing a random mutational event. The exotoxin used in this study was produced using the shaker flask fermentation procedure with mineral casein broth. A Petri dish method of bioassay using fresh bovine feces was used to determine the efficacy of the exotoxin against horn flies. The LD50 was found to be 5.35 μl/g of feces. Five bacterial tester strains were identified and characterized for the genetic markers described by Ames et al. (B. N. Ames et al., 1975, Mutat. Res., 31, 347–364). Appropriate doses of the B. thuringiensis supernatant, solvent or positive control were added to agar plates. The supernatant was tested at five dose levels against all five strains of bacteria. Controls of bacteria only were included for spontaneous reversions. All treatments were performed in triplicate. The numbers of revertant colonies from each set of triplicate plates were averaged and the standard deviation calculated and compared to that found with the solvent control. The negative controls, positive controls, and sterility controls all fulfilled requirements for determination of a valid test. No detectable mutagenic activity was found for the thermostable exotoxin of B. thuringiensis morrisoni.  相似文献   

18.
Summary Analysis of a large number of experimental data from the cultivation of Bacillus subtilis formed the basis for a kinetic model of the process explaining the effect of composition of the culture medium and of the growth rate on the rate of enzyme production. The resulting rate of formation of -amylase (EC 3.2.1.1) reflects the sum of the rate of enzyme production and the rate of its degradation as affected by the environment. The kinetic dependence confirms the previously described mechanism of regulation of enzyme biosynthesis. The mathematical model of the process served here to determine the optimal conditions for enzyme biosynthesis which were then verified in a fed-batch cultivation. The production of the enzyme in fed-batch culture was found to be twice that found in a batch cultivation.Symbols X biomass concentration, g·l-1 - t time, h - S 1 caseinate concentration, g·l-1 - S 2 starch concentration, g·l-1 - P product concentration, U·ml-1 - r P specific rate of product formation, U·g-1·h-1 - R P total rate of product formation, U·l-1·h-1 - Y yield coefficient - specific growth rate, h-1  相似文献   

19.
The starch-binding domain of Bacillus sp. strain TS-23 α-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel–chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70°C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K m value. Starch-binding assays showed that the K d and B max values for the fusion enzyme were 2.3 μM and 0.35 μmol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris–HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption–elution cycle with a purification of 11.4-fold.  相似文献   

20.
The pistachio green stink bug, Brachynema germari, has 3–5 generations per year and causes severe damages to pistachio crops in Iran. Physiological digestive processes, such as digestive carbohydrases, can be used to design new strategies in IPM programs for controlling this pest. The enzyme α-amylase digests starch during the initial stage of digestion. Complete breakdown of carbohydrates takes place in the midgut where α- and β-glucosidic activities are highest. Alpha-amylase and α- and β-glucosidase activities were found in the midgut and salivary glands of pistachio green stink bug adults. Overall enzyme activities were significantly higher in the midgut than in salivary glands. The highest α-amylase and α- and β-glucosidase activities were in section v3, whereas the lowest activities were in section v4. Vmax was higher and Km was lower in the midgut than in the salivary glands for these enzymes. In the pistachio green stink bug, the optimal pH was pH 5–6.5 and the optimal temperature was 30 °C to 35 °C for these enzymes. Alpha-amylase activity in the midgut and salivary glands decreased as the concentrations of MgCl2, EDTA and SDS increased. Enzyme activities in both midgut and salivary glands increased in the presence of NaCl, CaCl2, and KCl. NaCl had a negative effect on alpha-amylase extracted from salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号