首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundCisplatin (DDP) is the first-in-class drug for advanced and non-targetable non-small-cell lung cancer (NSCLC). A recent study indicated that DDP could slightly induce non-apoptotic cell death ferroptosis, and the cytotoxicity was promoted by ferroptosis inducer. The agents enhancing the ferroptosis may therefore increase the anticancer effect of DDP. Several lines of evidence supporting the use of phytochemicals in NSCLC therapy. Ginkgetin, a bioflavonoid derived from Ginkgo biloba leaves, showed anticancer effects on NSCLC by triggering autophagy. Ferroptosis can be triggered by autophagy, which regulates redox homeostasis. Thus, we aimed to elucidate the possible role of ferroptosis involved in the synergistic effect of ginkgetin and DDP in cancer therapy.MethodsThe promotion of DDP-induced anticancer effects by ginkgetin was examined via a cytotoxicity assay and western blot. Ferroptosis triggered by ginkgetin in DDP-treated NSCLC was observed via a lipid peroxidation assay, a labile iron pool assay, western blot, and qPCR. With ferroptosis blocking, the contribution of ferroptosis to ginkgetin + DDP-induced cytotoxicity, the Nrf2/HO-1 axis, and apoptosis were determined via a luciferase assay, immunostaining, chromatin immunoprecipitation (CHIP), and flow cytometry. The role of ferroptosis in ginkgetin + DDP-treated NSCLC cells was illustrated by the application of ferroptosis inhibitors, which was further demonstrated in a xenograft nude mouse model.ResultsGinkgetin synergized with DDP to increase cytotoxicity in NSCLC cells, which was concomitant with increased labile iron pool and lipid peroxidation. Both these processes were key characteristics of ferroptosis. The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured NSCLC cells. Furthermore, blocking ferroptosis reversed the ginkgetin-induced inactivation of Nrf2/HO-1 as well as the elevation of ROS formation, MMP loss, and apoptosis in DDP-treated NSCLC cells.ConclusionThis study is the first to report that ginkgetin derived from Ginkgo biloba leaves promotes DDP-induced anticancer effects, which can be due to the induction of ferroptosis.  相似文献   

2.
目的 白扁豆总皂苷是中药白扁豆经过提取分离纯化步骤制备得到,关于白扁豆的总皂苷成分如何影响前列腺癌细胞系PC-3细胞的生长情况缺少研究。因此,有必要探讨白扁豆总皂苷对前列腺癌细胞系PC-3细胞生长的机制研究。方法 本研究采用CCK8方法检测不同浓度的白扁豆总皂苷对前列腺癌细胞系PC-3细胞生长的影响。利用转录组学分析白扁豆总皂苷抑制前列腺癌细胞系PC-3细胞生长的分子机制,并且进一步通过实时定量PCR(qRT-PCR)和蛋白质免疫印迹(Western blot)实验对相关差异基因的表达进行验证。利用Western blot和CCK8检测白扁豆总皂苷处理过表达醛脱氢酶7家族成员A1(ALDH7A1)的PC-3细胞存活率。结果 随着白扁豆总皂苷浓度升高,前列腺癌细胞PC-3的存活率显著下降,白扁豆总皂苷的IC50值为1 086 mg/L。转录组学测序结果显示,与对照组相比,白扁豆总皂苷处理的细胞中有2 360个差异表达基因,其中1 982个基因上调,378个基因下调。基因功能注释(GO)结果显示,差异表达基因显著富集到与有丝分裂纺锤体检查点(mitotic spindle checkpoint)、纺锤体组装检查点(spindle assembly checkpoint)等一系列跟癌症的发生发展密切相关的生物学过程。此外,基因组京都百科全书(KEGG)分析结果也显示,差异表达基因富集在肿瘤代谢等信号通路。进一步对其中的差异基因进行验证,结果显示,与对照组相比,白扁豆总皂苷处理的前列腺癌细胞中ALDH7A1、甘氨酸C-乙酰转移酶(GCAT)和磷酸甘油酸变位酶家族成员4(PGAM4)的蛋白质表达水平明显降低(P<0.05),而二甲基甘氨酸脱氢酶(DMGDH)和胱硫醚β合成酶样(CBSL)的蛋白质表达水平显著升高(P<0.001)。体外细胞实验结果表明,白扁豆总皂苷通过下调前列腺癌细胞中ALDH7A1的表达抑制PC-3细胞生长。结论 白扁豆总皂苷可能通过下调ALDH7A1表达从而在体外抑制前列腺癌细胞的生长。  相似文献   

3.
Capsaicin, the pungent ingredient of hot chilli pepper, has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. Here, we investigated the role of the vanilloid capsaicin in the death regulation of the human cancer androgen-resistant cell line PC-3. Capsaicin inhibited the growth of PC-3 with an IC50 of 20 μM cells and induced cell apoptosis, as assessed by flow cytometry and nuclei staining with DAPI. Capsaicin induced apoptosis in prostate cells by a mechanism involving reactive oxygen species generation, dissipation of the mitochondrial inner transmembrane potential (ΔΨm) and activation of caspase 3. Capsaicin-induced apoptosis was not reduced by the antagonist capsazepine in a dose range from 0.1 μM to 20 μM, suggesting a receptor-independent mechanism. To study the in vivo effects of capsaicinoids, PC-3 cells were grown as xenografts in nude mice. Subcutaneous injection of either capsaicin or capsazepine (5 mg/kg body weight) in nude mice suppressed PC-3 tumor growth in all tumors investigated and induced apoptosis of tumor cells. Our data show a role for capsaicin against androgen-independent prostate cancer cells in vitro and in vivo and suggest that capsaicin is a promising anti-tumor agent in hormone-refractory prostate cancer, which shows resistance to many chemotherapeutic agents.  相似文献   

4.
The epithelial–mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.  相似文献   

5.
6.
We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear.To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes (1) highly sensitive to zinc; (2) associated with zinc homeostasis, i.e., metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs); (3) relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR.Results showed that zinc effect on genome-wide expression patterns was cell-type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1953 in HPR-1; 3534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes' expression provided evidence for the cell type-dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes MT-1J and MT-1M, denoted previously as “nonfunctional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g., Fos, Akt1, Jak3 and PI3K, were highly regulated by zinc with cell-type specificity.This work provided an extensive database on zinc-related prostate cancer research. The strategy of data analysis was devoted to finding genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc-induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy.  相似文献   

7.
The antiproliferation effects of pipernonaline, a piperine derivative, were investigated on human prostate cancer PC-3 cells. It inhibited growth of androgen independent PC-3 and androgen dependent LNCaP prostate cells in a dose-dependent (30–90 μM) and time-dependent (24–48 h) manner. The growth inhibition of PC-3 cells was associated with sub-G1 and G0/G1 accumulation, confirmed by the down-regulation of CDK2, CDK4, cyclin D1 and cyclin E, which are correlated with G1 phase of cell cycle. Pipernonaline up-regulated cleavage of procaspase-3/PARP, but did not change expression of proapoptotic bax and antiapoptotic bcl-2 proteins. Its caspase-3 activation was confirmed by the caspase-3 assay kit. In addition, pipernonaline caused the production of reactive oxygen species (ROS), increase of intracellular Ca2+, and mitochondrial membrane depolarization, which these phenomena were reversed by N-acetylcysteine, a ROS scavenger. The results suggest that pipernonaline exhibits apoptotic properties through ROS production, which causes disruption of mitochondrial function and Ca2+ homeostasis and leads to its downstream events including activation of caspase-3 and cleavage of PARP in PC-3 cells. This is the first report of pipernonaline toward the anticancer activity of prostate cancer cells, which provides a role for candidate agent as well as the molecular basis for human prostate cancer.  相似文献   

8.
《Translational oncology》2020,13(1):102-112
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo.Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.  相似文献   

9.
Dai Y  Desano J  Tang W  Meng X  Meng Y  Burstein E  Lawrence TS  Xu L 《PloS one》2010,5(12):e14153

Background

Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC) with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.

Methodology/Principal Findings

We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1), with IC50 in the range of 1–2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.

Conclusions/Significance

Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be developed as a new therapeutic agent for hormone-refractory prostate cancer.  相似文献   

10.
11.
Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.  相似文献   

12.
Zinc concentrations in the prostate are uniquely high but are dramatically decreased with prostate cancer. Studies have suggested that increasing zinc in the prostate may be a potential therapeutic strategy. The goal of this study was to evaluate the antiproliferative effects of zinc in prostate cancer cells (PC-3) and noncancerous benign prostate hyperplasia (BPH) cells (BPH-1) and to define possible mechanisms. PC-3 and BPH-1 cells were treated with zinc (0–250 μM) for 24 and 48 h, and cell growth and viability were examined. Apoptosis was assessed by phosphatidylserine externalization, caspase activation and protein expression of B-cell CLL/lymphoma 2 (Bcl-2)-associated X protein (BAX):Bcl-2. BPH-1 cells were more sensitive to the antiproliferative effects of zinc compared to PC-3. The response to zinc in PC-3 and BPH-1 cells differed as evidenced by opposing effects on Bcl-2:BAX expression. Additionally, different effects on the nuclear expression and activity of the p65 subunit of nuclear factor kappa B were observed in response to zinc between the two cell types. The differential response to zinc in PC-3 and BPH-1 cells suggests that zinc may serve an important role in regulating cell growth and apoptosis in prostate cancer and hyperplasia cells.  相似文献   

13.
14.
Prostate carcinoma is one of the leading causes of cancer-related morbidity and mortality in males in western countries. Curcumin exhibits growth-suppressive activity against several cancers, including prostate cancer, but it has poor bioavailability. The purpose of this study was to evaluate the anticancer potency and mechanism of a curcumin analogue, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), in human prostate cancer. Studies were performed in established human prostate cancer cell lines (PC-3 and DU145) as well as in a murine xenograft tumor (PC-3) model. Ca 37 presented a preferential suppression capacity against growth and migration toward prostate cancer cells compared with curcumin. Ca 37 impaired the bioenergetics system, promoted cell cycle arrest and apoptosis activation in PC-3 cells. In addition, 0.5 μmol (6.65 mg/kg body weight) of Ca 37 significantly inhibited the growth of the prostate xenografted tumors, whereas 6 μmol (110 mg/kg body weight) of curcumin had little effect. Furthermore, a combination of Ca 37 and curcumin resulted in enhanced antitumor activity in prostate cancer cells. N-Acetylcysteine abrogated both reactive oxygen species (ROS) production and viability loss induced by Ca 37 but partially prevented growth inhibition in PC-3 cells treated with curcumin alone, or a combination with Ca 37. The data indicate that induction of ROS plays a vital role in the growth inhibitory effect of Ca 37 in PC-3 cells. This study suggests that Ca 37, alone or in combination with curcumin, may be a promising anticancer agent for prostate cancer therapy.  相似文献   

15.
16.
17.
A series of functionalized naphthalene was synthesized and screened against human prostate cancer cell line (PC-3). The in vitro antiproliferative activity of the synthesized compounds was evaluated by monitoring their cytotoxic effects against PC-3 cells by using MTT assay. We observed that compound 5f resulted in more than 50% cell death at 14?µM. Treatment of PC-3 cells with 5f provides apoptosis by flow cytometry. Western blotting showed decreased expression of pro-caspase 8 and 9. Our study shows that cancer cell treated with 5f has higher concentration of reactive oxygen species as compare to untreated sample, which facilitate cancerous cell to enter apoptosis. Exact mechanism by which ROS is generated after 5f treatment is still under study. Molecular docking study further strengthens the results obtained from in vitro experiments. Compound 5f can be considered as a promising leads for anticancer agent against prostate cancer cells due to its potent cytotoxic activity and apoptotic effect.  相似文献   

18.
Proteasome inhibitors are useful in the treatment of cancer. Recently, we found a new proteasome inhibitor, TP-110, derived from tyropeptin A produced by Kitasatospora sp. Here we report that TP-110 induces apoptosis in human prostate cancer PC-3 cells. TP-110 showed strong cytotoxicity to PC-3 cells (IC50=0.05 μM). It increased the number of cells in the G2-M phase and increased the accumulated amounts of the p21 and p27 proteins, which are negative regulators of cell cycle progression. Furthermore, it induced apoptosis along with chromatin condensation and DNA fragmentation in PC-3 cells, and TP-110-induced apoptosis appeared to be associated with caspase activation. Additionally, TP-110 inhibited not only the degradation of IκB and the nuclear translocation of nuclear factor-κB (NF-κB), but also the DNA binding activity of NF-κB. These results indicate that TP-110 shows a strong growth inhibition and apoptosis in PC-3 cells.  相似文献   

19.
20.
人同源盒基因NKX3.1对前列腺癌细胞的诱导凋亡作用   总被引:3,自引:0,他引:3  
构建人同源盒基因NKX3.1 cDNA真核表达载体,研究其在前列腺癌细胞PC-3、LNCaP 中的表达及对细胞的促凋亡作用.以人前列腺癌细胞LNCaP细胞中的总RNA为模板,RT-PCR扩增NKX3.1基因全长编码片段,将NKX3.1 cDNA重组到真核表达载体pcDNA3.1(+)中; 将pcDNA3.1-NKX3.1表达载体瞬时转染前列腺癌细胞PC-3和LNCaP 细胞,用RT-PCR和Western印迹检测NKX3.1 cDNA在转录水平和蛋白水平的表达;绘制细胞生长曲线,观察NKX3.1对前列腺癌细胞增殖的抑制作用;用DNA/ladder和流式细胞术检测NKX3.1对前列腺癌细胞凋亡的影响,进一步用RT PCR检测凋亡相关基因caspase3、caspase8、caspase9、Apaf1、survivin和Bcl2表达的变化.人同源盒基因NKX3.1 cDNA真核表达载体pcDNA3.1-NKX3.1经酶切及测序鉴定正确. pcDNA3.1-NKX3.1转染PC-3和LNCaP细胞后,经RT-PCR和Western印迹证明能有效表达NKX3.1.生长曲线显示,前列腺癌细胞转染NKX3.1 cDNA后细胞增殖受到抑制;前列腺癌细胞转染NKX3.1 cDNA 48 h后,DNA电泳呈现具有凋亡特征的DNA ladder;流式细胞术检测出现明显凋亡峰;RT-PCR检测凋亡相关基因.结果显示,caspase3、caspase8、caspase9基因表达明显增加,Bcl2基因表达明显减少.本研究成功构建了真核表达载体pcDNA3.1 NKX3.1, 转染PC3和LNCaP细胞后能有效表达,并对细胞具有诱导凋亡作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号