首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Smooth muscle cell (SMC) plays critical roles in many human diseases, an in vitro system that recapitulates human SMC differentiation would be invaluable for exploring molecular mechanisms leading to the human diseases. We report a directed and highly efficient SMC differentiation system by treating the monolayer-cultivated human embryonic stem cells (hESCs) with all-trans retinoid acid (atRA). When the hESCs were cultivated in differentiation medium containing 10microM RA, more than 93% of the cells expressed SMC-marker genes along with the steadily accumulation of such SMC-specific proteins as SM alpha-actin and SM-MHC. The fully differentiated SMCs were stable in phenotype and capable of contraction. This inducible and highly efficient in vitro human SMC system could be an important resource to study the mechanisms of SMC phenotype determination in human.  相似文献   

4.
Human embryonic stem (hES) cells are able to give rise to a variety of cell lineages under specific culture condition. An effective strategy for stable genetic modification in hES cells may provide a powerful tool for study of human embryogenesis and cell-based therapies. However, gene silences are documented in hES cells. In current study, we investigated whether genes controlled under ubiquitin promoter are expressed during hematopoietic-endothelial differentiation in hES cells. Undifferentiated hES cells (H1) were transduced by lentivirus encoding green fluorescent protein (GFP) gene under ubiquitin promoter. GFP-expressing hES cells (GFP-H1) were established after several rounds of mechanical selection under fluorescence microscope. GFP gene was stably expressed in hES cells throughout prolonged (> 50 passages) cultivation, and in differentiated embryo body (EB) and teratoma. Hematopoietic and endothelial markers, including KDR (VEGFR2), CD34, CD31, Tie-2, GATA-1 and GATA-2, were expressed at similar levels during hES cell differentiation in parent hES cells and GFP-H1 hES cells. CD34+ cells isolated from GFP-H1 hES cells were capable to generate hematopoietic colony-forming cells and tubular structure-forming cells. Differentiated GFP-EB formed vasculature structures in a semi-solid sprouting EB model. These results indicated that a transgene under ubiquitin promoter in lentiviral transduced hES cells retained its expression in undifferentiated hES cells and in hES-derived hematopoietic and endothelial cells. With the view of embryonic mesodermal developing events in humans, genetic modification of hES cells by lentiviral vectors provides a powerful tool for study of hematopoiesis and vasculogenesis.  相似文献   

5.
Over the last several decades, murine embryonic stem cells (mESCs) have been used as a model for human embryonic stem cell (hESC) research. The relevance of this approach has not yet been proven. There is a great deal of evidence that is indicative of substantial differences between these two cell types. An analysis of the literature shows that the differences concern ESC proliferation, self-renewal, and differentiation. Consequently, mESC may be considered as a model object for hESC studies only for some aspects of their biology. The alternative model objects, such as primate ESC, are also discussed briefly in this review.  相似文献   

6.
Embryonic stem cells (ESCs) differentiate in vivo and in vitro into all cell lineages, and they have been proposed as cellular therapy for human diseases. However, the molecular mechanisms controlling ESC commitment toward specific lineages need to be specified. We previously found that the p38 mitogen-activated protein kinase (p38MAPK) pathway inhibits neurogenesis and is necessary to mesodermal formation during the critical first 5 days of mouse ESC commitment. This period corresponds to the expression of specific master genes that direct ESC into each of the three embryonic layers. By both chemical and genetic approaches, we found now that, during this phase, the p38MAPK pathway stabilizes the p53 protein level and that interfering directly with p53 mimics the effects of p38MAPK inhibition on ESC differentiation. Anti-p53 siRNA transient transfections stimulate Bcl2 and Pax6 gene expressions, leading to increased ESC neurogenesis compared with control transfections. Conversely, p53 downregulation leads to a strong inhibition of the mesodermal master genes Brachyury and Mesp1 affecting cardiomyogenesis and skeletal myogenesis of ESCs. Similar results were found with p53−/− ESCs compared with their wild-type counterparts. In addition, knockout p53 ESCs show impaired smooth muscle cell and adipocyte formation. Use of anti-Nanog siRNAs demonstrates that certain of these regulations result partially to p53-dependent repression of Nanog gene expression. In addition to its well-known role in DNA-damage response, apoptosis, cell cycle control and tumor suppression, p53 has also been involved in vivo in embryonic development; our results show now that p53 mediates, at least for a large part, the p38MAPK control of the early commitment of ESCs toward mesodermal and neural lineages.  相似文献   

7.
Mouse embryonic stem cells (ESCs) can be induced to form pancreatic exocrine enzyme-producing cells in vitro in a stepwise fashion that recapitulates the development in vivo. However, there is no protocol for the differentiation of pancreatic-like cells from human ESCs (hESCs). Based upon the mouse ESC model, we have induced the in vitro formation of pancreatic exocrine enzyme-producing cells from hESCs. The protocol took place in four stages. In Stage 1, embryoid bodies (EBs) were formed from dissociated hESCs and then treated with the growth factor activin A, which promoted the expression of Foxa2 and Sox17 mRNAs, markers of definitive endoderm. In Stage 2, the cells were treated with all-trans retinoic acid which promoted the transition to cells that expressed gut tube endoderm mRNA marker HNF1b. In Stage 3, the cells were treated with fibroblast growth factor 7 (FGF7), which induced expression of Pdx1 typical of pancreatic progenitor cells. In Stage 4, treatment with FGF7, glucagon-like peptide 1, and nicotinamide induced the expression amylase (AMY) mRNA, a marker for mature pancreatic exocrine cells. Immunohistochemical staining showed the expression of AMY protein at the edges of cell clusters. These cells also expressed other exocrine secretory proteins including elastase, carboxypeptidase A, chymotrypsin, and pancreatic lipase in culture. Production of these hESC-derived pancreatic enzyme-producing cells represents a critical step in the study of pancreatic organogenesis and in the development of a renewable source of human pancreatic-like exocrine cells.  相似文献   

8.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。  相似文献   

9.
目的:比较人皮肤成纤维细胞(humandermalfibroblasts,HDFs)与小鼠胚胎成纤维细胞(Mouseembryonicfibroblasts,MEFs)的增殖能力及研究人皮肤成纤维细胞作为饲养层支持人胚胎干细胞(humanembryonicstemcells,hESCs)未分化生长的能力。方法:利用组织贴壁法从人皮肤中分离出HDFs,通过细胞形态的观察和生长曲线的绘制比较HDFs与MEFs的体外增殖能力。将HDFs作为饲养层细胞与hESCs共培养,传代12代后,检测hESCs碱性磷酸酶(AKP)、表面特异性标志及胚胎干细胞特异性转录因子。结果:HDFs可连续传代培养15代以上,10代以下的HDFs增殖迅速,而MEFs自第4代起,增殖能力就明显下降;hESCs在HDFs饲养层上可传代培养12代以上,克隆边界清晰,细胞排列紧密,碱性磷酸酶、表面标志物检测均呈阳性,表达了hESCs特异性转录因子。结论:HDFs比MEFs具有更强的增殖能力;HDFs可作为培养hEscs的饲养层细胞。  相似文献   

10.
11.
12.
Human embryonic stem cells (hESCs) are candidates for many applications in the areas of regenerative medicine, tissue engineering, basic scientific research as well as pharmacology and toxicology. However, use of hESCs is limited by their sensitivity to freezing and thawing procedures. Hence, this emerging science needs new, reliable preservation methods for the long-term storage of large quantities of functional hESCs remaining pluripotent after post-thawing and culturing.Here, we present a highly efficient, surface based vitrification method for the cryopreservation of large numbers of adherent hESC colonies, using modified cell culture substrates. This technique results in much better post-thaw survival rate compared to cryopreservation in suspension and allows a quick and precise handling and storage of the cells, indicating low differentiation rates.  相似文献   

13.
‘Requirements for Human Embryonic Stem Cells’ is the first set of guidelines on human embryonic stem cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements and transportation requirements for human embryonic stem cells, which is applicable to the quality control for human embryonic stem cells. It was originally released by the China Society for Cell Biology on 26 February 2019 and was further revised on 30 April 2020. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human embryonic stem cells for applications.  相似文献   

14.
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs.  相似文献   

15.
The proliferation, structural differentiation, and capacity of association of human ES cell-derived cardiomyocytes were assessed in culture and in extracardiac graft tissues. Embryoid body (EB) outgrowths having cardiomyocytes, and their transplants in mice retroperitoneum or renal subcapsular region were analyzed mainly by immunochemistry. During the culture of EB outgrowths, colonies of cardiomyocytes grew in size exhibiting synchronized beatings. Subcellular structures of those cardiomyocytes involved in the contraction, hormone production, and intercellular integration differentiated with distinct immunoreactivity for constituent proteins/peptides. Judging from PCNA staining, proliferation potential was maintained in part for more than 70 days. In teratoma tissues on post-transplantation Day 7, cardiomyocytes maintained their integration with connexin 43 and cadherin at their junctions. They partly exhibited strong PCNA reactivity. On Day 28, large part of the cardiomyocytes lost their association, dispersing among non-cardiac cells without discernible cadherin reactivity. Proliferation potential was generally low irrespective of their tissue diversity. From these results, structural differentiation and active proliferation of human ES cell-derived cardiomyocytes occurred in vitro, maintaining their association. When developed in extracardiac tissues, however, the cardiomyocytes showed low proliferation potential and reduced cellular integration. This leads to the proposal that some procedure will be necessary to accelerate or maintain the proliferation of cardiomyocytes in vivo.  相似文献   

16.
17.
目的 体外建立人胚胎干细胞传代培养方法,研究人胚胎干细胞细胞化学染色特性.方法 以小鼠胚胎成纤维细胞作为饲养层传代培养人胚胎干细胞,检测人胚胎干细胞、自发分化克隆及拟胚体的细胞化学染色特性.结果 人胚胎干细胞在小鼠胚胎成纤维细胞饲养层上传30代以上其形态保持不变;人胚胎十细胞碱性磷酸酶、过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性,自发分化克隆细胞阳性程度明显减弱;人胚胎干细胞形成的拟胚体碱性磷酸酶染色弱阳性,过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性.结论 小鼠胚胎成纤维细胞能支持人胚胎干细胞传代培养,细胞化学染色结果能初步鉴别人胚胎干细胞未分化特性.  相似文献   

18.
19.
Long-term proliferation of human embryonic stem (hES) cells is currently achieved by co-culturing with mitotically inactive primary mouse embryonic fibroblasts (mEFs), which serve as feeder cells. This study explores the possibility that proliferative mEFs can be used as feeder cells to maintain the prolonged expansion of hES cells. All undifferentiated hES cell clumps were re-plated on six different densities of proliferative mEFs. hES colonies cultured on 1 x 10(5) - 5 x 10(5) proliferative mEFs amplified over 130 days of continuous culture and remained undifferentiated, as did those cultured on mitotically inactive mEFs. This suggests that certain densities of proliferative mEFs can maintain the propagation of hES cells, which may be helpful for identifying the cytokines and adhesion molecules that are required for their self-renewal.  相似文献   

20.
An automated vision system, TeratomEye, was developed for the identification of three representative tissue types: muscle, gut and neural epithelia which are commonly found in teratomas formed from human embryonic stem cells. Muscle tissue, a common structure was identified with an accuracy of 90.3% with high specificity and sensitivity greater than 90%. Gut epithelia were identified with an accuracy of 87.5% with specificity and sensitivity greater than 80%. Neural epithelia which were the most difficult structures to distinguish gave an accuracy of 47.6%. TeratomEye is therefore useful for the automated identification of differentiated tissues in teratoma sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号