首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PAK5为PAKs家族中新近发现的成员. PAKs是一类通过与Rac和Cdc42结合而激活的高度保守的蛋白酶.PAKs在细胞骨架、神经生长、激素信号传导、基因转录等生理活动中起着重要的调控作用. PAK5在大脑组织中高度表达,在细胞中定位于线粒体. PAK5 与神经生长、增强微管的稳定性以及阻止细胞凋亡等活动密切相关.本文就PAK5的结构、表达部位和功能以及其在调控凋亡级联反应中的作用等方面做了简要综述.  相似文献   

2.
The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases.  相似文献   

3.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

4.
5.
Cell migration contributesto many physiological processes and requires dynamic changes in thecytoskeleton. These migration-dependent cytoskeletal changes are partlymediated by p21-activated protein kinases (PAKs). At least four closelyrelated isoforms, PAK1, PAK2, PAK3, and PAK4, exist in mammalian cells.In smooth muscle cells, little is known about the expression,activation, or ability of PAKs to regulate migration. Our studyrevealed the existence of three PAK isoforms in cultured trachealsmooth muscle cells (TSMCs). Additionally, we constructed adenoviralvectors encoding wild type and a catalytically inactive PAK1 mutant toinvestigate PAK activation and its role in TSMC migration. Stimulationof TSMCs with platelet-derived growth factor (PDGF) increased the activity of PAK1 over time. Overexpression of mutant PAK1 blocked PDGF-induced chemotactic cell migration. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) in cells overexpressing wild-type PAK1 was similar to vector controls; however, p38 MAPK phosphorylation was severely reduced by overexpression of the PAK1mutant. Collectively, these results suggest a role for PAK1 inchemotactic TSMC migration that involves catalytic activity and mayrequire signaling to p38 MAPK among other pathways.

  相似文献   

6.
Emerging from the Pak: the p21-activated protein kinase family   总被引:23,自引:0,他引:23  
The p21-activated protein kinases (PAKs) are members of a growing family of regulatory enzymes that may play roles in diverse phenomena such as cellular morphogenesis, the stress response and the pathogenesis of AIDS. PAKs were initially discovered as binding partners for small (21 kDa) GTPases that regulate actin polymerization, and recent evidence has shown that some members of the PAK family may be effectors for related GTPases that are involved in intracellular vesicle trafficking. Because the downstream signalling pathways for all such GTPases are poorly understood, intense studies are under way to discern the role of PAK and its cousins. In this review, the authors highlight some of the established properties of the extended PAK family and discuss current controversies regarding their possible roles as GTPase effectors.  相似文献   

7.
p21活化激酶(p21-activated kinase,PAKs)是小G蛋白Rac和细胞分裂调控蛋白42(Cdc42)的一类效应蛋白质. PAKs是一类进化保守的丝氨酸/苏氨酸蛋白激酶,在细胞骨架重排、细胞增生、细胞存活及增殖等方面发挥重要作用. 在哺乳动物中根据结构特征可将PAKs分为2个亚家族I类(A组)和Ⅱ类(B组):I类包括PAK1、PAK2和PAK3,Ⅱ类包括PAK4,PAK5和PAK6. 近年来,对PAKs在肿瘤发生发展中作用的研究成为焦点.本文对PAKs中各成员的结构功能,及其在肿瘤发生发展过程中的作用等方面进行简要综述.  相似文献   

8.
The Nef protein of primate immunodeficiency viruses plays an important role in the pathogenesis of acquired immunodeficiency syndrome (AIDS) [1] [2]. The interaction of Nef with the Nef-associated kinase (NAK) is one of the most conserved properties of different human and simian immunodeficiency virus (HIV and SIV) Nef alleles. The role of NAK association is currently not known but it has been implicated in enhanced viral infectivity in cell culture and in disease progression in SIV-infected macaques [3]. Previous studies have indicated that NAK shares many features with the p21-activated kinases (PAKs) [3], but the molecular identity of NAK has remained unknown. We have generated specific antisera against PAKs 1-3, and expressed these kinases individually as epitope-tagged proteins. By using these reagents in experiments involving partial proteolytic mapping, and exploiting the unique ability of PAK2 to serve as a caspase substrate, we have positively identified NAK as PAK2. Interestingly, although ectopic PAK2 overexpression efficiently replaced endogenous PAK2 from the complex with Nef, the total Nef-associated PAK2 activity was not increased, indicating the abundance of another cellular factor(s) as the limiting factor in Nef-PAK2 complex formation. Identification of NAK as PAK2 should now facilitate elucidation of its role as a mediator of the pathogenic effects of Nef.  相似文献   

9.
The sequence homology between Acanthamoeba myosin I heavy chain kinase (MIHCK) and other p21-activated kinases (PAKs) is relatively low, including only the catalytic domain and a short PAK N-terminal motif (PAN), and even these regions are not highly homologous. In this paper, we report the expression in insect cells of full-length, fully regulated Acanthamoeba MIHCK and further characterize the regulation of this PAK by Rac, calmodulin, and autoinhibition. We map the autoinhibitory region of MIHCK to its PAN region and show that the PAN region inhibits autophosphorylation and kinase activity of unphosphorylated full-length MIHCK and its expressed catalytic domain but has very little effect on either when they are phosphorylated. These properties are similar to those reported for mammalian PAK1. Unlike PAK1, MIHCK is activated by Rac only in the presence of phospholipid. However, peptides containing the PAN region of MIHCK bind Rac in the absence of lipid, and Rac binding reverses the inhibition of the MIHCK catalytic domain by PAN peptides. Our data suggest that a region N-terminal to PAN is required for optimal binding of Rac. Also unlike mammalian PAK, phospholipid stimulation of Acanthamoeba MIHCK and Dictyostelium MIHCK) (which is also a PAK) is inhibited by Ca(2+)-calmodulin. In contrast to Dictyostelium MIHCK, however, Ca(2+)-calmodulin also inhibits Rac-induced activity of Acanthamoeba MIHCK. The basic region N-terminal to PAN is essential for calmodulin binding.  相似文献   

10.
p21-activated kinases (PAKs) play an important role in diverse cellular processes. Full activation of PAKs requires autophosphorylation of a critical threonine/serine located in the activation loop of the kinase domain. Here we report crystal structures of the phosphorylated and unphosphorylated PAK1 kinase domain. The phosphorylated PAK1 kinase domain has a conformation typical of all active protein kinases. Interestingly, the structure of the unphosphorylated PAK1 kinase domain reveals an unusual dimeric arrangement expected in an authentic enzyme-substrate complex, in which the activation loop of the putative "substrate" is projected into the active site of the "enzyme." The enzyme is bound to AMP-PNP and has an active conformation, whereas the substrate is empty and adopts an inactive conformation. Thus, the structure of the asymmetric homodimer mimics a trans-autophosphorylation complex, and suggests that unphosphorylated PAK1 could dynamically adopt both the active and inactive conformations in solution.  相似文献   

11.
p21活化激酶的生物学活性及其与肿瘤的关系   总被引:3,自引:0,他引:3  
p21活化激酶(p21-activatedkinase,PAK),为一类进化上保守的丝氨酸/苏氨酸蛋白激酶。PAK在许多组织中广泛表达,作为小G蛋白Rho家族Cdc42和Rac1的下游靶蛋白,可以被生长因子及其他胞外信号通过GTP酶依赖的信号通路或非GTP酶依赖的信号通路活化,发挥多种生物学效应。PAK作为一种重要的生物学调节因子,在哺乳动物一系列细胞功能中具有重要作用,如:细胞运动、细胞生存、细胞周期、血管生成、基因转录调节及癌细胞的侵袭转移。通过对PAK家族成员信号转导机制的研究,为癌症治疗提供分子靶标。  相似文献   

12.
Dutta S  Sardar A  Ray D  Raha S 《Gene》2007,402(1-2):57-67
p21-activated kinases (PAKs) are a family of serine/threonine kinases whose activity is regulated by the binding of the small Rho family GTPases as well as by RhoGTPase independent mechanisms. PAKs have wide-ranging functions which include cytoskeletal organisation, cell motility, cell proliferation and survival. We have identified a PAK from Entamoeba histolytica - EhPAK3 that is distributed in the cytoplasm of unstimulated cells and localizes to the caps after induction of capping with Concanavalin A. EhPAK3 contains a GTPase interacting (CRIB) domain, an N-terminal pleckstrin homology (PH) domain and a C-terminal kinase domain. Among the PAKs of E. histolytica studied so far, EhPAK3 bears the maximum similarity to Dictyostelium discoideum PAKC (DdPAKC). Phylogenetic analysis showed that EhPAK3 was closely related to DdPAKC and forms a group with DdPAKA, Dd Myosin I heavy chain kinase (DdMIHCK), and a PAK reported earlier from E. histolytica EhPAK2. Recombinant full-length EhPAK3 undergoes auotophosphorylation and phosphorylates histone H1 in vitro in the absence of any small GTPase. This is the first comprehensive characterization of a PAK protein from E. histolytica, which has constitutive activity and has demonstrated a strong involvement in receptor capping.  相似文献   

13.
The p21-activated kinases (PAKs), in common with many kinases, undergo multiple autophosphorylation events upon interaction with appropriate activators. The Cdc42-induced phosphorylation of PAK serves in part to dissociate the kinase from its partners PIX and Nck. Here we investigate in detail how autophosphorylation events affect the catalytic activity of PAK by altering the autophosphorylation sites in both alpha- and betaPAK. Both in vivo and in vitro analyses demonstrate that, although most phosphorylation events in the PAK N-terminal regulatory domain play no direct role in activation, a phosphorylation of alphaPAK serine 144 or betaPAK serine 139, which lie in the kinase inhibitory domain, significantly contribute to activation. By contrast, sphingosine-mediated activation is independent of this residue, indicating a different mode of activation. Thus two autophosphorylation sites direct activation while three others control association with focal complexes via PIX and Nck.  相似文献   

14.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   

15.
p21-activated kinases (PAKs) were the first identified mammalian members of a growing family of Ste20-like serine–threonine protein kinases. In this study, we show that PAK1 can be stimulated by carbachol, lysophosphatidic acid (LPA), epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) by multiple independent and overlapping pathways. Dominant-negative Ras, Rac, and Cdc42 inhibited PAK1 activation by all of these agonists, while active Rac1 and Cdc42 were sufficient to maximally activate PAK1 in the absence of any treatment. Active Ras induced only a weak activation of PAK1 that could be potentiated by muscarinic receptor stimulation. Studies using inhibitors of the EGF receptor tyrosine kinase, phosphatidylinositol 3-kinase (PI3-kinase) and protein kinase C (PKC) revealed that all of the cell surface agonists could activate PAK1 through pathways independent of PKC, that EGF stimulated a PI3-kinase dependent pathway to stimulate PAK1, and that muscarinic receptor stimulation of PAK1 was predominantly mediated through this EGF-R-dependent mechanism. Activation of PAK1 by LPA was independent of PI3-kinase and the EGF receptor, but was inhibited by dominant-negative RhoA. These results identify multiple Ras-dependent pathways to activation of PAK1.  相似文献   

16.
The involvement of p21-activated kinases (PAKs) in important cellular processes such as regulation of the actin skeleton morphology, transduction of signals controlling gene expression, and execution of programmed cell death has directed attention to the regulation of the activity of these kinases. Here we report that activation of PAK2 by p21 GTPases can be strongly potentiated by cellular tyrosine kinases. PAK2 became tyrosine phosphorylated in its N-terminal regulatory domain, where Y130 was identified as the major phosphoacceptor site. Tyrosine phosphorylation-mediated superactivation of PAK2 could be induced by overexpression of different Src kinases or by inhibiting cellular tyrosine phosphatases with pervanadate and could be blocked by the Src kinase inhibitor PP1 or by mutating the Y130 residue. Analysis of PAK2 mutants activated by amino acid changes in the autoinhibitory domain or the catalytic domain indicated that GTPase-induced conformational changes, rather than catalytic activation per se, rendered PAK2 a target for tyrosine phosphorylation. Thus, PAK activation represents a potentially important point of convergence of tyrosine kinase- and p21 GTPase-dependent signaling pathways.  相似文献   

17.
p21‐activated kinases (PAKs) are Cdc42 effectors found in metazoans, fungi and protozoa. They are subdivided into PAK1‐like (group I) or PAK4‐like (group II) kinases. Human PAK4 is widely expressed and its regulatory mechanism is unknown. We show that PAK4 is strongly inhibited by a newly identified auto‐inhibitory domain (AID) formed by amino acids 20 to 68, which is evolutionarily related to that of other PAKs. In contrast to group I kinases, PAK4 is constitutively phosphorylated on Ser 474 in the activation loop, but held in an inactive state until Cdc42 binding. Thus, group II PAKs are regulated through conformational changes in the AID rather than A‐loop phosphorylation.  相似文献   

18.
Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at mitochondria.  相似文献   

19.
The p21-activated kinases (PAKs) are important effectors of Rho-family small GTPases. The PAK family consists of two groups, type I and type II, which have different modes of regulation and signaling. PAK6, a type II PAK, influences behavior and locomotor function in mice and has an ascribed role in androgen receptor signaling. Here we show that PAK6 has a peptide substrate specificity very similar to the other type II PAKs, PAK4 and PAK5 (PAK7). We find that PAK6 catalytic activity is inhibited by a peptide corresponding to its N-terminal pseudosubstrate. Introduction of a melanoma-associated mutation, P52L, into this peptide reduces pseudosubstrate autoinhibition of PAK6, and increases phosphorylation of its substrate PACSIN1 (Syndapin I) in cells. Finally we determine two co-crystal structures of PAK6 catalytic domain in complex with ATP-competitive inhibitors. We determined the 1.4 Å co-crystal structure of PAK6 with the type II PAK inhibitor PF-3758309, and the 1.95 Å co-crystal structure of PAK6 with sunitinib. These findings provide new insights into the structure-function relationships of PAK6 and may facilitate development of PAK6 targeted therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号