首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel quinolines incorporating 1,2,4-triazole/oxime hybrids were prepared. They showed remarkable anti-inflammatory activity and exhibited very low incidence of gastric ulceration, compared to indomethacin. Most of the compounds tested showed remarkable inhibition of the COX-1 isozyme, with IC50’s ranging from 0.48 to 28 µM. Compounds 7c and 9g showed high safety profiles with normal stomach tissue integrity. Docking studies supported the observed in vitro inhibitory activity towards the COX enzymes that may explain their promising anti-inflammatory activity relative to indomethacin. Moreover, differences between the COX-1 and COX-2 isozymes in observed energy scores, as well as in the number of interactions with some of the compounds tested, might predict their higher selectivity towards COX-1 rather than COX-2. Compound 9e was found to inhibit both COXs non-competitively with Ki values of 81 µM and 94.6 µM.  相似文献   

2.
MurA is an intracellular bacterial enzyme that is essential for peptidoglycan biosynthesis, and is therefore an important target for antibacterial drug discovery. We report the synthesis, in silico studies and extensive structure–activity relationships of a series of quinazolinone-based inhibitors of MurA from Escherichia coli. 3-Benzyloxyphenylquinazolinones showed promising inhibitory potencies against MurA, in the low micromolar range, with an IC50 of 8 µM for the most potent derivative (58). Furthermore, furan-substituted quinazolinones (38, 46) showed promising antibacterial activities, with MICs from 1 µg/mL to 8 µg/mL, concomitant with their MurA inhibitory potencies. These data represent an important step towards the development of novel antimicrobial agents to combat increasing bacterial resistance.  相似文献   

3.
Twenty five derivatives of indole carbohydrazide (125) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (125) showed varying degree of α-amylase inhibitory potential.ranging between 9.28 and 599.0 µM when compared with standard acarbose having IC50 value 8.78 ± 0.16 µM. Six analogs, 25 (IC50 = 9.28 ± 0.153 µM), 22 (IC50 = 9.79 ± 0.43 µM), 4 (IC50 = 11.08 ± 0.357 µM), 1 (IC50 = 12.65 ± 0.169 µM), 8 (IC50 = 21.37 ± 0.07 µM) and 14 (IC50 = 43.21 ± 0.14 µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50 = 8.78 ± 0.16 µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.  相似文献   

4.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

5.
A series of newer 1,2,4-triazole-3-thiol derivatives 5(am) and 6(ai) containing a triazole fused with pyrazine moiety of pharmacological significance have been synthesized. All the synthesized compounds were screened for their in vitro antileishmanial and antioxidant activities. Compounds 5f (IC50 = 79.0 µM) and 6f (IC50 = 79.0 µM) were shown significant antileishmanial activity when compared with standard sodium stibogluconate (IC50 = 490.0 µM). Compounds 5b (IC50 = 13.96 µM) and 6b (IC50 = 13.96 µM) showed significant antioxidant activity. After performing molecular docking study and analyzing overall binding modes it was found that the synthesized compounds had potential to inhibit L. donovani pteridine reductase 1 enzyme. In silico ADME and metabolic site prediction studies were also held out to set an effective lead candidate for the future antileishmanial and antibacterial drug discovery initiatives.  相似文献   

6.
Discovery and development of carbonic anhydrase inhibitors is crucial for their clinical use as antiepileptic, diurectic and antiglaucoma agents. Keeping this in mind, we have synthesized carbohydrazones 127 and evaluated them for their in vitro carbonic anhydrase inhibitory potential. Out of twenty-seven compounds, compounds 1 (IC50 = 1.33 ± 0.01 µM), 2 (IC50 = 1.85 ± 0.24 µM), 3 (IC50 = 1.37 ± 0.06 µM), and 9 (IC50 = 1.46 ± 0.12 µM) have showed carbonic anhydrase inhibition better than the standard drug zonisamide (IC50 = 1.86 ± 0.03 µM). Moreover, compounds 4 (IC50 = 2.32 ± 0.04 µM), 5 (IC50 = 3.96 ± 0.35 µM), 7 (IC50 = 2.33 ± 0.02 µM), and 8 (IC50 = 2.67 ± 0.01 µM) showed good inhibitory activity. Cheminformatic analysis has shown that compounds 1 and 2 possess lead-like properties. In addition, kinetic and molecular docking studies were also performed to investigate the binding interaction between carbohydrazones and carbonic anhydrase enzyme. This study has identified a novel and potent class of carbonic anhydrase inhibitors with the potential to be investigated further.  相似文献   

7.
A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1 2 3) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50 = 0.38 ± 0.82 µM) and 23 (IC50 = 1.66 ± 0.14 µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50 = 1.77–2.98 µM when compared with the standard acarbose (IC50 = 1.66 ± 0.1 µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.  相似文献   

8.
Hepatitis C infection is a cause of chronic liver diseases such as cirrhosis and carcinoma. The current therapy for hepatitis C has limited efficacy and low tolerance. The HCV encodes a serine protease which is critical for viral replication, and few protease inhibitors are currently on the market. In this paper, we describe the synthesis and screening of novel isosorbide-based peptidomimetic inhibitors, in which the compounds 1d, 1e, and 1i showed significant inhibition of the protease activity in vitro at 100 µM. The compound 1e also showed dose-response (IC50 = 36 ± 3 µM) and inhibited the protease mutants D168A and V170A at 100 µM, indicating it as a promising inhibitor of the HCV NS3/4A protease. Our molecular modeling studies suggest that the activity of 1e is associated with a change in the interactions of S2 and S4 subsites, since that the increased flexibility favors a decrease in activity against D168A, whereas the appearance of a hydrophobic cavity in the S4 subsite increase the inhibition against V170A strain.  相似文献   

9.
A library of 4,6-dihydroxypyrimidine diones (135) were synthesized and evaluated for their urease inhibitory activity. Structure-activity relationships, and mechanism of inhibition were also studied. All compounds were found to be active with IC50 values between 22.6 ± 1.14–117.4 ± 0.73 µM, in comparison to standard, thiourea (IC50 = 21.2 ± 1.3 µM). Kinetics studies on the most active compounds 27, 16, 17, 28, and 33 were performed to investigate their modes of inhibition, and dissociation constants Ki. Compounds 2, 3, 7, 16, 28, and 33 were found to be mixed-type of inhibitors with Ki values in the range of 7.91 ± 0.024–13.03 ± 0.013 µM, whereas, compounds 46, and 17 were found to be non-competitive inhibitors with Ki values in the range of 9.28 ± 0.019–13.05 ± 0.023 µM. In silico study was also performed, and a good correlation was observed between experimental and docking studies. This study is continuation of our previously reported urease inhibitory activity of pyrimidine diones, representing potential leads for further research as possible treatment of diseases caused by ureolytic bacteria.  相似文献   

10.
Chemical investigations of the MeOH extract of air dried flowers of the Australian tree Angophora woodsiana (Myrtaceae) yielded two new β-triketones, woodsianones A and B (1, 2) and nine known β-triketones (311). Woodsianone A is a β-triketone-sesquiterpene adduct and woodsianone B is a β-triketone epoxide derivative. The structures of the new and known compounds were elucidated from the analysis of 1D/2D NMR and MS data. The relative configurations of the compounds were determined from analysis of 1H–1H coupling constants and ROESY correlations. All compounds (111) had antiplasmodial activity against the chloroquine sensitive strain 3D7. The known compound rhodomyrtone (5) and new compound woodsianone B (2) showed moderate antiplasmodial activities against the 3D7 strain (1.84 µM and 3.00 µM, respectively) and chloroquine resistant strain Dd2 (4.00 µM and 2.53 µM, respectively).  相似文献   

11.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

12.
Utilizing structure-based drug design techniques, we designed and synthesized phosphodiesterase 10A (PDE10A) inhibitors based on pyridazin-4(1H)-one. These compounds can interact with Tyr683 in the PDE10A selectivity pocket. Pyridazin-4(1H)-one derivative 1 was linked with a benzimidazole group through an alkyl spacer to interact with the OH of Tyr683 and fill the PDE10A selectivity pocket. After optimizing the linker length, we identified 1-(cyclopropylmethyl)-5-[3-(1-methyl-1H-benzimidazol-2-yl)propoxy]-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (16f) as having highly potent PDE10A inhibitory activity (IC50 = 0.76 nM) and perfect selectivity against other PDEs (>13,000-fold, IC50 = >10,000 nM). The crystal structure of 16f bound to PDE10A revealed that the benzimidazole moiety was located deep within the PDE10A selectivity pocket and interacted with Tyr683. Additionally, a bidentate interaction existed between the 5-alkoxypyridazin-4(1H)-one moiety and the conserved Gln716 present in all PDEs.  相似文献   

13.
Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC50 = 5 µM and 7.5 µM, respectively) and less than nifurtimox (IC50 = 3.6 µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC50 values of 160.64 and 160.66 µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively.  相似文献   

14.
An ethyl acetate extract the bark of Garcinia xanthochymus exhibited strong inhibition towards α-glucosidase and PTP1B with IC50 values of 0.3 ± 0.1 μg/mL and 2.3 ± 0.4 μg/mL, respectively. Chemical constituents of the extract were therefore examined, and two new compounds, xanthochymusxanthones A (1) and B (2), along with ten known xanthones (312), were isolated. Their structures were determined using spectroscopic methods, mainly 1D and 2D NMR. Inhibitory activity of the isolated compounds was then tested, and subelliptenone F (12) showed significant effect towards α-glucosidase with IC50 value of 4.1 ± 0.3 μM (compared with acarbose, IC50 = 900.0 ± 3.0 μM) whilst xanthochymusxanthone B (2) exhibited remarkable activity towards PTP1B with IC50 value of 8.0 ± 0.6 μM (compared with RK682, IC50 = 4.4 ± 0.3 μM).  相似文献   

15.
A series of novel 1,3,4-oxadiazole/thiadiazole–chalcone conjugates were synthesized and their in vitro and in vivo antiviral activities were evaluated via microscale thermophoresis method and half-leaf method, respectively. The in vitro results indicated that compounds 7g, 7l, 8h, and 8l displayed good antiviral activity against TMV, with the binding constant values of 5.93, 6.15, 6.02, and 5.04 μM, respectively, which were comparable to that of Ninnanmycin (6.78 μM) and even better than that of Ribavirin (99.25 μM). The in vivo results demonstrated that compounds 7g, 7l, 8h, and 8l exhibited remarkable anti-TMV activity with the EC50 values of 33.66, 33.97, 33.87 and 30.57 µg/mL, respectively, which were comparable to that of Ningnanmycin (36.85 µg/mL) and superior to that of Ribavirin (88.52 µg/mL). Interestingly, the trend of antiviral activity in vivo was consistent with the in vitro results.  相似文献   

16.
A series of novel quinazoline-1-deoxynojirimycin hybrids were designed, synthesized and evaluated for their inhibitory activities against two drug target enzymes, epidermal growth factor receptor (EGFR) tyrosine kinase and α-glucosidase. Some synthesized compounds exhibited significantly inhibitory activities against the tested enzymes. Comparing with reference compounds gefitinib and lapatinib, compounds 7d, 8d, 9b and 9d showed higher inhibitory activities against EGFR (IC50: 1.79–10.71 nM). Meanwhile the inhibitory activities of 7d, 8d and 9c against α-glucosidase (IC50 = 0.14, 0.09 and 0.25 µM, respectively) were obvious higher than that of miglitol (IC50 = 2.43 µM), a clinical using α-glucosidase inhibitor. Interestingly, compound 9d as a dual inhibitor showed high inhibitory activity to EGFRwt tyrosine kinase (IC50 = 1.79 nM), also to α-glucosidase (IC50 = 0.39 µM). The work could be very useful starting point for developing a new series of enzyme inhibitors targeting EGFR and/or α-glucosidase.  相似文献   

17.
The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1–25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078 ± 0.19 and 2.926 ± 0.05 µM when compared with acarbose having IC50 = 0.62 ± 0.22 µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644 ± 0.128, 1.078 ± 0.19, 1.245 ± 0.25, 1.843 ± 0.19, 1.350 ± 0.24, 1.629 ± 0.015, 1.353 ± 0.232, 1.359 ± 0.119 and 1.488 ± 0.07 µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.  相似文献   

18.
The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer’s disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC50 = 33.0 µM; 2, IC50 = 8.5 µM) compared to tacrine (CYP1A2 IC50 = 1.5 µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species.  相似文献   

19.
In the present study, the pharmacophore integration methodology provided an efficient access to a new library of thioxothiazolidinone–sulfonate conjugates (8a–r) from easily available synthetic precursors. The approach was excellently high yielding with flexible structural sites for chemical modifications. The designed hybrid scaffolds were assessed for aldehyde/aldose reductase inhibition activities. The results for the in vitro bioassays were promising with the identification of compound 8e as the lead and selective candidate for ALR2 inhibition with an IC50 value of 0.468 ± 0.003 µM as compared to 3.1 ± 0.2 µM for the standard (sorbinil), whereas compound 8o demonstrated high inhibitory potency for both ALR2 and ALR1 enzymes. Molecular modeling analysis of the potent compounds provided further insight into the biological properties where detailed binding mode analysis revealed that the conjugates (8a–r) were found stabilized in the active site of the enzymes through the development of a number of interactions with catalytic residues.  相似文献   

20.
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17 ± 8% and 20 ± 9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42 ± 36 and 37 ± 13 GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD = 15.3 µM) was much higher than that of 3 (KD = 26.0 µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号