首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With ongoing resistance problems against the marketed EGFR inhibitors having a quinazoline core scaffold there is a need for the development of novel inhibitors having a modified scaffold and, thus, expected lower EGFR resistance problems. An additional problem concerning EGFR inhibitor resistance is an observed heterodimerization of EGFR with PDGFR-β that neutralises the sole inhibitor activity towards EGFR. We developed novel pyrimido[4,5-b]indoles with varied substitution patterns at the 4-anilino residue to evaluate their EGFR and PDGFR-β inhibiting properties. We identified dual inhibitors of both EGFR and PDGFR-β in the nanomolar range which have been initially screened in cancer cell lines to prove a benefit of both EGFR and PDGFR-β inhibition.  相似文献   

2.
3.
Protein–protein interactions (PPI) play a crucial role in many biological processes and modulation of PPI using small molecules to target hot spots has therapeutic value. As a model system we will use PPI of human epidermal growth factor receptors (EGFRs). Among the four EGFRs, EGFR–HER2 and HER2–HER3 are well known in cancer. We have designed a small molecule that is targeted to modulate HER2-mediated signaling. Our approach is novel because the small molecule designed disrupts dimerization not only of EGFR–HER2, but also of HER2–HER3. In the present study we have shown, using surface plasmon resonance analysis, that a peptidomimetic, compound 5, binds specifically to HER2 protein extracellular domain and disrupts the dimerization of EGFRs. To evaluate the effect of compound 5 on HER2 signaling in vitro, Western blot and PathHunter assays were used. Results indicated that compound 5 inhibits the phosphorylation of HER2 kinase domain and inhibits the heterodimerization in a dose-dependent manner. Molecular modeling methods were used to model the PPI of HER2–HER3 heterodimer.  相似文献   

4.
Aiming to develop more potent analgesic substances a new series of hexapeptides containing β2-tryptophan analogues was synthesized. The Trp in position 4 and 5, respectively in Ac-Arg-Phe-Met-Trp-Met-Lys-NH2 (opioid receptor antagonist) and Ac-Arg-Tyr-Tyr-Arg-Trp-Lys-NH2 (highly potent and selective NOP-receptor agonist) was substituted by the (S)-2-(1-methyl-1H-indol-3-yl)propionic residue or the (S)-2-(5-methoxy-1H-indol-3-yl)propionic residue. The analgesic effect of the four newly synthesized compounds has been evaluated in male Wistar rats by PP- and HP tests and compared to the native templates. Further estimation of the mechanisms of action of each compound was achieved using specific antagonists—naloxone for opioid and JTC801 for the NOP receptor. Replacement of Trp with β2-tryptophan analogues in 4th position (Ac-Arg-Phe-Met-Trp-Met-Lys-NH2) led to increased and longer lasting analgesic effect. The results obtained permit us to assume that both opioid and NOP receptors take part in the newly synthesized compounds analgesic effects.  相似文献   

5.
6.
Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary depletion of PIP2. Indeed, artificial recruitment of PIP5K removed the secondary loss of PIP2 completely. Altogether, our experimental and theoretical approaches demonstrate roles and dynamics of the protein kinases, β-arrestin, and PIP5K in the desensitization of PAR2.  相似文献   

7.
8.
Latent Membrane Protein 2A (LMP2A) is an Epstein–Barr virus-encoded protein that is important for the maintenance of latent infection. Its activity affects cellular differentiation, migration, proliferation and B cell survival. LMP2A resembles a constitutively activated B cell antigen receptor and exploits host kinases to activate a set of downstream signaling pathways. In the current study we demonstrate the interaction of LMP2A with intersectin 1 (ITSN1), a key endocytic adaptor protein. This interaction occurs via both the N- and C-tails of LMP2A and is mediated by the SH3 domains of ITSN1. Additionally, we identified the Shb adaptor and the Syk kinase as novel binding ligands of ITSN1. The Shb adaptor interacts simultaneously with the phosphorylated tyrosines of LMP2A and the SH3 domains of ITSN1 and mediates indirect interaction of ITSN1 to LMP2A. Syk kinase promotes phosphorylation of both ITSN1 and Shb adaptors in LMP2A-expressing cells. In contrast to ITSN1, Shb phosphorylation depends additionally on Lyn kinase activity.Considering that Shb and ITSN1 are implicated in various receptor tyrosine kinase signaling, our results indicate that LMP2A can affect a number of signaling pathways by regulating the phosphorylation of the ITSN1 and Shb adaptors.  相似文献   

9.
Angiopoietin-1 (Ang1) signals via the receptor tyrosine kinase Tie2 which exists in complex with the related protein Tie1 at the endothelial cell surface. Tie1 undergoes regulated ectodomain cleavage in response to phorbol esters, vascular endothelial growth factor (VEGF) and tumour necrosis factor-α (TNFα). Recently phorbol esters and VEGF were found also to stimulate ectodomain cleavage of Tie2. Here we investigate for the first time the effects of factors activating ectodomain cleavage on both Tie1 and Tie2 within the same population of cells, and their impact on angiopoietin signalling. We find that phorbol ester and VEGF activated Tie1 cleavage within minutes followed by restoration to control levels by 24 h. However, several hours of PMA and VEGF treatment were needed to elicit a detectable decrease in cellular Tie2, with complete loss seen at 24 h of PMA treatment. TNFα stimulated Tie1 cleavage, and induced a sustained decrease in cellular Tie1 over 24 h whilst increasing cellular Tie2. These differential effects of agonists on Tie1 and Tie2 result in dynamic modulation of the cellular Tie2∶Tie1 ratio. To assess the impact of this on Ang1 signalling cells were stimulated with VEGF and TNFα for differing times and Ang1-induced Tie2 phosphorylation examined. Elevated Tie2∶Tie1, in response to acute VEGF treatment or chronic TNFα, was associated with increased Ang1-activated Tie2 in cells. These data demonstrate cellular levels of Tie1 and Tie2 are differentially regulated by pathophysiologically relevant agonists resulting in dynamic control of the cellular Tie2∶Tie1 balance and modulation of Ang1 signalling. These findings highlight the importance of regulation of signalling at the level of the receptor. Such control may be an important adaptation to allow modulation of cellular signalling responses in systems in which the activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

10.
1. Salicylate, in concentrations of 0.25mm and above, enhances the basal activity of tyrosine–2-oxoglutarate aminotransferase in homogenates of rat liver incubated in the absence of added pyridoxal 5′-phosphate (endogenous activity). The effect is decreased by increasing the concentration of the cofactor. 2. The intraperitoneal administration of sodium salicylate enhances the activity of rat liver tyrosine aminotransferase; the major effect during the first hour being on the enzyme in the absence of added pyridoxal phosphate. Actinomycin D prevents the induction of the enzyme by cortisol and tryptophan. Induction by pyridoxine or salicylate is 50% inhibited by actinomycin D. The effects of the injections of various combinations of cortisol, pyridoxine and salicylate were also studied in the absence or presence of actinomycin D. 3. It is suggested that salicylate induces rat liver tyrosine aminotransferase by displacing its protein-bound cofactor and that a cofactor-type induction of the hepatic enzyme occurs in pyridoxine-treated rats.  相似文献   

11.
Huang J  Hao D  Chen Y  Xu Y  Tan J  Huang Y  Li F  Chen Y 《Peptides》2011,32(7):1488-1495
Enantiomeric amphipathic α-helical antibacterial peptides were synthesized and their biophysical and biological properties under different physiological conditions were studied. In the absence of physiological factors, the l- and d-peptides exhibited similar antimicrobial activities against a broad spectrum of bacteria, even against clinical isolates with resistance to traditional antibiotics. However, in the presence of NaCl, CaCl2 or human serum albumin (HSA) at physiological concentrations, the enantiomers revealed bacterium-species dependent attenuations in antibacterial activity. In the presence of salts the electrostatic interaction between the peptides and the biomembrane was inhibited. Salts, especially CaCl2, weakened the ability of the peptides to permeabilize the outer membrane of Gram-negative bacteria, as determined by a 1-N-phenylnaphthylamine uptake assay. HSA exhibited variable inhibitory effects on the activity of the peptides when incubated with different bacterial strains. The peptides showed different binding association abilities to HSA at different molar ratios, regardless of their chirality, resulting in reduced peptide biological activity. The d-peptide performed better than its l-enantiomer in all conditions tested because of its resistance to proteolysis, and may therefore represent a promising candidate for development as a therapeutic agent.  相似文献   

12.
In an attempt to provide further confirmation of the antioxidant role of reduced form of coenzyme Q homologue (CoQnH2) and α-tocopherol (α-Toc), we incubated isolated rat hepatocytes with a water-soluble radical initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) in the presence or absence of exogenously added coenzyme Q10 (CoQ10) or α-Toc for 3 h at 37°C under an atmosphere of 95% oxygen and 5% carbon dioxide. In the control experiment without adding AAPH it was confirmed that added CoQ10 and α-Toc were incorporated into the cells and some CoQ10 were converted to CoQ10H2. Incubation of hepatocytes with 50 mM AAPH resulted in the formation of thiobarbituric acid-reactive substances and the decrease in cell viability and both were inhibited by exogenously added CoQ10 or α-Toc in a dose-dependent manner. The decrease in endogenous CoQ9H2 and α-Toc levels was observed by the addition of AAPH. Addition of CoQ10 inhibited the oxidation of CoQ9H2 to CoQ9 dose-dependently while the addition of α-Toc did not. These data suggest that both CoQnH2 and α-Toc act as antioxidants and can inhibit free radical-mediated cell injury.  相似文献   

13.
Prostate cancer (PCa) is a frequently diagnosed male cancer and the second leading cause of cancer-related death in many countries. Due to various amino acid mutations that occurred in the ligand binding domain of androgen receptor (AR), the patients were observed insensitive, even resistant to the marketed antiandrogens such as bicalutamide and enzalutamide, which emphasizes the urgent need for novel antiandrogens to solve drug resistance problem. Recently a series of carbobicyclo and oxabicyclo succinimide analogs were reported to effectively antagonize AR. In this study, to explore the structural requirements for these AR antagonists, we performed quantitative structure–activity relationship analysis on carbobicyclo and oxabicyclo succinimide analogs by using two-dimensional multiple linear regressions (MLR) method and three-dimension comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The obtained models show satisfactory results with proper reliabilities and powerful external predictability. Moreover, the CoMFA and CoMSIA contour maps can intuitively represent key features associated with bioactivities. These models may offer guidance for the rational design and modification of new lead compounds for antiandrogens.  相似文献   

14.
15.
The role of pacing postconditioning (PPC) in the heart protection against ischemia–reperfusion injury is not completely understood. The aim of this study was to investigated if 17-β-estradiol (estrogen, E2), endogenous atrial natriuretic peptide (ANP), endogenous brain natriuretic peptide (BNP), and tumor necrosis factor-alpha (TNF-α) are involved in PPC-mediated protection. Langendorff perfused female Wistar rat hearts were used for this study. Hearts challenged with regional ischemia for 30 min subjected to no further treatment served as a control. The PPC protocol was 3 cycles of 30 s pacing alternated between the right atrium and left ventricle (LV). Protection was assessed by recovery of LV contractility and coronary vascular–hemodynamics. Ischemia induced a significant (P?<?0.05) deterioration in the heart function compared with baseline data. PPC alone or in combination with short-term E2 treatment (E2 infusion at the beginning of reperfusion) significantly (P?<?0.05) improved the heart functions. Short-term E2 treatment post-ischemically afforded protection similar to that of PPC. However, long-term E2 substitution for 6 weeks completely attenuated the protective effects of PPC. Although no changes were noted in endogenous ANP levels, PPC significantly increased BNP expression level and decreased TNF-α in the cardiomyocyte lysate and coronary effluent compared to ischemia and controls. Our data suggested a protective role for short-term E2 treatment similar to that of PPC mediated by a pathway recruiting BNP and downregulating TNF-α. Our study further suggested a bad influence for long-term E2 substitution on the heart as it completely abrogated the protective effects of PPC.  相似文献   

16.
Leucine‐rich repeat(LRR) receptor‐like kinases(RLKs), evolutionarily related LRR receptor‐like proteins(RLPs) and receptor‐like cytoplasmic kinases(RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata(Arabidopsis), Lotus japonicus,and Medicago truncatula(Legumes), Oryza sativa ssp. japonica,and O. sativa ssp. indica(Rice), we find that LRR RLKs comprise the largest group of these LRR‐related subfamilies, while the related RLCKs represent the smallest group. In addition,comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies.Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage‐specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species‐specific duplication in the two Arabidopsis species and originated from older Arabidopsis‐specific or rosid‐specific duplications. We discuss potential pitfalls related to functional prediction for genes that have undergone frequent turnover(duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships will likely outperform that based on sequence similarity alone.  相似文献   

17.
18.
Abstract

Simultaneous inhibition of EGFR and HER2 by dual-targeting inhibitors is an established anti-cancer strategy. Therefore, a recent trend in drug discovery involves understanding the features of such dual inhibitors. In this study, three different G-QSAR models were developed corresponding to individual EGFR, HER2 and the dual-model for both receptors. The dual-model provided site-specific information wherein (i) increasing electronegative character and higher index of saturated carbon at R4 position; (ii) presence of chlorine atom at R2 position; (iii) decreasing alpha modified shape index at R1 and R3 positions; and (iv) less electronegativity at R2 position; were found important for enhancing the dual activity. Also, comparison of dual-model with the EGFR/HER2 individual models revealed that it incorporates the properties of both models and, thus, represents a combination of EGFR/HER2. Further, fragment analysis revealed that R2 and R4 are important for imparting high potency while specificity is decided by R1/R3 fragment. We also checked the predictive ability of the dual-model by determining applicability domain using William’s plot. Also, analysis of active molecules showed they show favorable substitutions that agree with the constructed dual-model. Thus, we have been successful in developing a single dual-response QSAR model to get an insight into various structural features influencing EGFR/HER2 activity.  相似文献   

19.
Nitraria retusa is a halophyte species that is distributed in North Africa and used as a traditional medicinal plant. In this study, N. retusa ethanol extract and its constituent isorhamnetin (IRA) protected against amyloid β (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. An in vitro Aβ aggregation assay suggested that IRA destabilizes Aβ fibrils.  相似文献   

20.
Ten new halogenated alkaloids named purpuroines A–J (110), and a known analogue (11), were isolated from the marine sponge Iotrochota purpurea. Their structures were elucidated by extensive spectroscopic (IR, MS, 1D and 2D NMR) data analyses. The inhibitory activity of some compounds against a panel of human disease related fungi and bacteria are evaluated. Bioassay for the regulation of tyrosine kinases revealed compounds 1 and 4 possessing selective inhibition against the kinase LCK. Primary structure–activity relationship is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号