首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten novel artemisinin derivatives containing fluorine atoms were synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies in this study. The in vitro cytotoxicity against U87MG, SH-SY5Y, MCF-7, MDA-MB-231, A549 and A375 cancer cell lines was evaluated by MTT assay. Compound 9j was the most potent anti-proliferative agent against the human breast cancer MCF-7 cells (IC50?=?2.1?μM). The mechanism of action of compound 9j was further investigated by analysis of cell apoptosis and cell cycle. Compound 9j induced cell apoptosis and arrested cell cycle at G1 phase in MCF-7 cells. Our promising findings indicated that the compound 9j could stand as potential lead compound for further investigation.  相似文献   

2.
In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.  相似文献   

3.
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16?μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9?μM, which was almost as active as that of CA-4 (IC50?=?4.2?μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.  相似文献   

4.
In continuation of our investigation of pharmacologically-motivated natural products, we have isolated bergenin (1) as a major compound from Mallotus philippensis, which is deployed in different Indian traditional systems of medicine. Here, a series of bergenin-1,2,3-triazole hybrids were synthesized and evaluated for their potentials against a panel of cancer cell lines. Several of the hybrid derivatives were found more potent in comparison to parent compound bergenin (1). Among them, 4j demonstrated potent activity against A-549 and HeLa cell lines with IC50 values of 1.86 µM and 1.33 μM, respectively, and was equipotent to doxorubicin. Cell cycle analysis showed that 4j arrested HeLa cells at G2/M phase and lead to accumulation of Cyclin B1 protein. Cell based tubulin polymerization assays and docking studies demonstrated that 4j disrupts tubulin assembly by occupying colchicine binding pocket of tubulin.  相似文献   

5.
To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC50 0.251?±?0.012?µM (standard KH2PO4 4.317?±?0.201?µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a4j obey Lipinsk’s rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues.  相似文献   

6.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

7.
The lead optimization studies of a series of GPR119 agonists incorporating a nortropanol scaffold are described. Extensive structure-activity relationship (SAR) studies of the lead compound 20f led to the identification of compound 36j as a potent, single digit nanomolar GPR119 agonist with high agonist activity. Compound 36j was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test and increased plasma insulin levels in a rat hyperglycemic model. It showed good to excellent pharmacokinetic properties in rats and monkeys and no untoward activities in counter-screen assays. Compound 36j demonstrated an attractive in vitro and in vivo profile for further development.  相似文献   

8.
A series of 4-dimethylamine flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential multi-functional anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity at the micromolar range (IC50, 1.83–33.20 μM for AChE and 0.82–11.45 μM for BChE). A Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5j with AChE, and molecular modeling study showed that 5j targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, the derivatives showed potent self-induced Aβ aggregation inhibitory activity at 20 μM with percentage from 25% to 48%. In addition, some compounds (5j5q) showed potent oxygen radical absorbance capacity (ORAC) ranging from 1.5- to 2.6-fold of the Trolox value. These compounds should be further investigated as multi-potent agents for the treatment of Alzheimer’s disease.  相似文献   

9.
A series of 4,4′-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2.  相似文献   

10.
Targeting of tyrosinase has proven to be the best means of identifying safe, efficacious, and potent tyrosinase inhibitors for whitening skin. We designed and synthesized ten NAB (N-(acryloyl)benzamide) derivatives (1a–1j) using the Horner-Wadsworth-Emmons olefination of diethyl (2-benzamido-2-oxoethyl)phosphonate and appropriate benzaldehydes. A mushroom tyrosinase inhibitory assay showed compounds 1a (36.71 ± 2.14% inhibition) and 1j (25.99 ± 2.77% inhibition) inhibited tyrosinase more than the other eight NAB derivatives and kojic acid (21.56 ± 2.93% inhibition), and docking studies indicated 1a (−6.9 kcal/mole) and 1j (−7.5 kcal/mole) had stronger binding affinities for tyrosinase than kojic acid (−5.7 kcal/mole). At a concentration of 25 μM, 1a and 1j were nontoxic in B16F10 melanoma cells and exhibited stronger tyrosinase inhibition (59.70% and 76.77%, respectively) than kojic acid (50.30% inhibition) or arbutin (41.78% inhibition at 400 μM). Similarly, in B16F10 melanoma cells, compounds 1a and 1j at 25 μM decreased total melanin content by 47.97% and 61.77%, respectively (kojic acid; 38.98%). Similarities between inhibitions of tyrosinase activity and melanin contents suggested the anti-melanogenic effects of 1a and 1j were due to tyrosinase inhibition. The excellent DPPH scavenging activity of 1j suggests it might enhance in vivo effect on melanin contents. The study suggests compound 1j offers a potential starting point for the development of safe, potent tyrosinase inhibitors.  相似文献   

11.
Identification of allosteric inhibitors of PTPs has attracted great interest as a new strategy to overcome the challenge of discover potent and selective molecules for therapeutic intervention. YopH is a virulence factor of the genus Yersinia, validated as an antimicrobial target. The finding of a second substrate binding site in YopH has revealed a putative allosteric site that could be further exploited. Novel chalcone compounds that inhibit PTPs activity were designed and synthesized. Compound 3j was the most potent inhibitor, interestingly, with different mechanisms of inhibition for the panel of enzymes evaluated. Further, our results showed that compound 3j is an irreversible non-competitive inhibitor of YopH that binds to a site different than the catalytic site, but close to the well-known second binding site of YopH.  相似文献   

12.
A group of N-benzylpiperidine-3/4-carbohydrazide-hydrazones were designed, synthesized and evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) activities, Aβ42 self-aggregation inhibitory potentials, and antioxidant capacities, in vitro. All of the compounds displayed eeAChE and huAChE inhibitory activity in a range of IC50 = 5.68–11.35 µM and IC50 = 8.80–74.40 µM, respectively and most of the compounds exhibited good to moderate inhibitory activity on BuChE enzyme. Kinetic analysis and molecular modeling studies were also performed for the most potent compounds (1g and 1j). Not only the molecular modeling studies but also the kinetic analysis suggested that these compounds might be able to interact with the catalytic active site (CAS) and the peripheral anionic site (PAS) of the enzymes. In the light of the results, compound 1g and compound 1j may be suggested as lead compounds for multifunctional therapy of AD.  相似文献   

13.
A series of tacrine-pyrazolo[3,4-b]pyridine hybrids were synthesised and evaluated as dual cholinesterase (ChE) and phosphodiesterase 4D (PDE4D) inhibitors for the treatment of Alzheimer’s disease (AD). Compound 10j, which is tacrine linked with pyrazolo[3,4-b]pyridine moiety by a six-carbon spacer, was the most potent acetylcholinesterase (AChE) with IC50 value of 0.125 μM. Moreover, compound 10j provided a desired balance of AChE and butylcholinesterase (BuChE) and PDE4D inhibition activities, with IC50 value of 0.449 and 0.271 μM, respectively. The above results indicated that this hybrid was a promising dual functional agent for the treatment of AD.  相似文献   

14.
A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91–5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52–473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3β in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.  相似文献   

15.
The synthesis and structure–activity relationships (SAR) of novel, potent imidazo[1,2-a]pyrazine-based Aurora kinase inhibitors are described. The X-ray crystal structure of imidazo[1,2-a]pyrazine Aurora inhibitor 1j is disclosed. Compound 10i was identified as lead compound with a promising overall profile.  相似文献   

16.
A series of 5-(1H-indol-3-yl)-N-aryl-1,3,4-oxadiazol-2-amines 8a–j has been designed, synthesized and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents based on our previous lead compound 8a. Synthesis of the target compounds was readily accomplished through a cyclisation reaction between indole-3-carboxylic acid hydrazide (5) and substituted isothiocyanates 6a–j, followed by oxidative cyclodesulfurization of the corresponding thiosemicarbazide 7a–j using 1,3-dibromo-5,5-dimethylhydantoin. Active compounds of the series 8a–j were found to have sub-micromolar IC50 values selectively in Bcl-2 expressing human cancer cell lines; notably the 2-nitrophenyl analogue 8a was found to exhibit potent activity, and compounds 8a and 8e possessed comparable Bcl-2 binding affinity (ELISA assay) to the established natural product-based Bcl-2 inhibitor, gossypol. Molecular modeling studies helped to further rationalise anti-apoptotic Bcl-2 binding, and identified compounds 8a and 8e as candidates for further development as Bcl-2 inhibitory anticancer agents.  相似文献   

17.
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate.  相似文献   

18.
A total of twenty-two novel coumarin triazole hybrids (4a-4k and 6a-6k) were synthesized from orcinol in good to excellent yields of 70–94%. The structures of all the synthesized compounds were elucidated by spectroscopic techniques such as 1H NMR, 13C NMR, and HRMS. The anti-inflammatory potential of synthesized compounds was investigated against the proinflammatory cytokine, TNF-α on U937 cell line and compounds 4d, 4j, and 6j were found to exhibit promising anti-inflammatory activity. These three compounds were further screened against TNF-α on LPS-stimulated RAW 264.7 cells, which confirm their anti-inflammatory potential. Furthermore, the above said active compounds were tested for their inhibitory effect on RANKL-induced osteoclastogenesis in RAW 264.7 cells by using tartrate resistant acid phosphatase (TRAP) staining assay at 10 µM. Molecular mechanism studies demonstrated that compound 4d exhibited dose dependent inhibition of RANKL-induced osteoclastogenesis by suppression of the NF-kB pathway. Thus, compound 4d is a promising candidate for further optimization to develop as a potent anti-osteoporotic agent.  相似文献   

19.
A series of novel 1,4-benzodioxane thiazolidinedione piperazine derivatives targeting FabH were designed and synthesized. The compounds exhibited better inhibitory activity against Gram-negative bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compound 6j exhibited the most significant inhibitory activity (MIC = 1.80 μΜ for P. aeruginosa, MIC = 1.56 μΜ for E. coli). Besides, compound 6j still showed the best E. coli FabH inhibitory activity (IC50 = 0.06 μΜ). Moreover, the antibacterial activities of all compounds were strongly correlated with the inhibitory ability of FabH, with a correlation coefficient of 0.954. Computational docking studies also showed that compound 6j has interacting with FabH key residues in the active site.  相似文献   

20.
Phosphatidylinositol-3-kinase (PI3K)δ inhibition is one of the most attractive approaches to the treatment of autoimmune diseases and leukocyte malignancies. Through the exploration of pyrazolopyridine derivatives as potential PI3Kδ inhibitors, compound 12a was identified as a potent PI3Kδ inhibitor but suffered from poor oral exposure in mice. With a modified amide linkage group, compound 15a was developed as an orally available PI3Kδ inhibitor with reduced selectivity against other PI3Ks. To improve the trade-off between selectivity and PK profile, structure–activity relationship (SAR) studies of terminal substituents on the pyrolidine ring were conducted. As a result, we developed potent PI3Kδ inhibitors with good oral availability. In particular, the representative compound 15j showed excellent selectivity for PI3Kδ over other PI3Ks with good oral exposure in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号