首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three classes of novel inhibitors of inosine monophosphate dehydrogenase have been prepared and their anti-proliferative properties were evaluated against several cancer cell lines.(1) Mycophenolic adenine dinucleotide analogues (813) containing a substituent at the C2 of adenine ring were found to be potent inhibitors of IMPDH (Ki’s in range of 0.6–82 nM) and sub-μM inhibitors of leukemic K562 cell proliferation. (2) Mycophenolic adenosine (d and l) esters (20 and 21) showed a potent inhibition of IMPDH2 (Ki = 102 and Ki = 231 nM, respectively) and inhibition of K562 cell growth (IC50 = 0.5 and IC50 = 1.6 μM). These compounds serve both as inhibitors of the enzyme and as a depot form of mycophenolic acid. The corresponding amide analogue 22, also a potent inhibitor of IMPDH (Ki = 84 nM), did not inhibit cancer cell proliferation. (3) Mycophenolic-(l)- and (d)-valine adenine di-amide derivatives 25 (Ki = 9 nM) and 28 (Ki = 3 nM) were found to be very potent enzymatically, but did not inhibit proliferation of cancer cells.  相似文献   

2.
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.  相似文献   

3.
We describe a novel sensitive and simplified gradient HPLC assay for quantification of the immunosuppressant mycophenolic acid (MPA) in rat and human plasma. In contrast to previously reported MPA assays, our method used a single step extraction comprising addition of acetonitrile, which contained phenolphthalein glucoronic acid as internal standard, for protein precipitation. Linearity: 0.1–100 μg/ml (r2>0.999), mean recoveries: MPA 98.0%, internal standard 105.2%, mean intra-day precision: 4.3%, mean day-to-day precision: 4.3%, mean day-to-day accuracy: −1.5%. Sensitivity was sufficient to allow for quantification of mycophenolic acid in as little as 50 μl plasma.  相似文献   

4.
Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARγ agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 μM, and cell proliferation at concentrations of 2, 1.5 and 1 μM, respectively.  相似文献   

5.
Inosine monophosphate dehydrogenases (IMPDHs) are the committed step in de novo guanine nucleotide biosynthesis. There are two separate, but very closely related IMPDH isoenzymes, termed type I and type II. IMPDHs are widely believed to be major targets for cancer and transplantation therapy. Mycophenolic acid (MPA) is a potent inhibitor of IMPDHs. Previously, we found that MPA acted as a latent agonist of this nuclear hormone receptor in U2OS cells, and 6'-hydroxamic acid derivatives of MPA inhibited tubulin-specific histone deacetylase[s] (HDAC[s]) in HeLa cells. Although MPA is a promising lead compound, structure-activity relationships (SARs) for inhibition of IMPDH, and the mechanism action of MPA derivatives have not well been understood. We therefore synthesized, evaluated MPA derivatives as IMPDH inhibitor in vitro and cellular level, and explored their biological function and mechanism in cultured cells. This paper exhibits that (i) functional groups at C-5, C-7, and C-6' positions in MPA are important for inhibitory activity against IMPDH, (ii) it is difficult to improve specificity against IMPDH II by modification of 5-, 7-, and 6'-group, (iii) demethylation of 5-OMe results in increasing hydrophilicity, and lowering cell permeability, (iv) ester bonds of protective groups at C-7 and C-6' positions are hydrolyzed to give MPA in cultures, (v) the effects of a tubulin-specific HDAC[s] inhibitor on proliferation and differentiation are weaker than its inhibitory activity against IMPDH. The present work may provide insight into the development of a new class of drug lead for treating cancer and transplantation.  相似文献   

6.
In our microbial screening program, we have isolated a fungal strain which produced mycophenolic acid (MPA). This compound is a selective inhibitor of guanine synthesis and, therefore, it has antibacterial, antiviral, antitumor and selective immunosuppressive activities, too. This last effect was utilised by Roche-Syntex to develop a derivative of MPA to the immunosuppressive drug CellCept®.

In order to obtain novel derivatives of MPA with an enhanced activity, we applied bioconversion of MPA with various microorganisms. TLC with densitometric evaluation and HPLC methods were developed for measurement of MPA derivatives. In the course of the bioconversion of MPA by using various types of microorganisms amidation of the carboxyl group, hydroxylation of the C4-methyl group and formation of glycoside derivatives from the hydroxyl group located on C7 were observed as the most frequently occurring transformations. The structures of bioconversion products were determined by UV, IR, 1H NMR, 13C NMR and mass spectroscopic methods.

The taxonomic features of cultures of the species applied in the bioconversion were also determined.  相似文献   


7.
Certain iminonaphtho[2,3-b]furan derivatives were synthesized from their respective carbonyl precursors in the regiospecific and the stereospecific manners. These compounds were evaluated for their antiproliferative effects against four human carcinoma cells (MCF7, NCI-H460, SF-268, and K562) and the normal fibroblast cell line (Detroit 551). Among them, (Z)-4-(hydroxyimino)naphtho[2,3-b]furan-9(4H)-one (8) and (Z)-4-methoxy-iminonaphtho[2,3-b]furan-9(4H)-one (9) exhibited GI50 values of 0.82 and 0.60 μM, respectively, against the growth of K562 cells and were inactive against the normal fibroblast Detroit 551. The selectivity index (SI) on K562 cell for 8 and 9 was >121.95 and >166.67, respectively, which is comparable to daunorubicin (SI = 239) and is more favorable than camptothecin (SI = 16.5). The cell cycle analysis on K562 indicated that these compounds arrest the cell cycle at the G2/M phase. The morphological assessment and DNA fragmentation analysis indicated that 9-induced cell apoptosis in K562 cells. The apoptotic induction may through caspase-3 activity and cleavage of PARP.  相似文献   

8.
Tuberculosis remains a global concern. There is an urgent need of newer antitubercular drugs due to the development of resistant forms of Mycobacterium tuberculosis (Mtb). Inosine 5′-monophosphate dehydrogenase (IMPDH), guaB2, of Mtb, required for guanine nucleotide biosynthesis, is an attractive target for drug development. In this study, we screened a focused library of 73 drug-like molecules with desirable calculated/predicted physicochemical properties, for growth inhibitory activity against drug-sensitive MtbH37Rv. The eight hits and mycophenolic acid, a prototype IMPDH inhibitor, were further evaluated for activity on purified Mtb-GuaB2 enzyme, target selectivity using a conditional knockdown mutant of guaB2 in Mtb, followed by cross-resistance to IMPDH inhibitor-resistant SRMV2.6 strain of Mtb, and activity on human IMPDH2 isoform. One of the hits, 13, a 5-amidophthalide derivative, has shown growth inhibitory potential and target specificity against the Mtb-GuaB2 enzyme. The hit, 13, is a promising molecule with potential for further development as an antitubercular agent.  相似文献   

9.
Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively.  相似文献   

10.
The immunosuppressant drug mycophenolic acid (MPA) and its major metabolite, mycophenolic acid glucuronide (MPAG), are highly bound to albumin. An HPLC-tandem-MS (HPLC/MS/MS) and an HPLC-UV assay were developed to measure free (unbound) concentrations of MPA and MPAG, respectively. Ultrafiltrate was prepared from plasma (500 microl) by ultrafiltration at 3000 x g for 20 min (20 degrees C). Both MPA and MPAG were isolated from ultrafiltrate (100 microl) by acidification and C18 solid-phase extraction. Free MPA was measured by electrospray tandem mass spectrometry using selected reactant monitoring (MPA: m/z 338.2--> 206.9) in positive ionisation mode. Chromatography was performed on a PFPP column (50 mm x 2 mm, 5 microm). Total analysis time was 7 min. The assay was linear over the range 1-200 microg/l with a limit of quantification of 1 microg/l. The inter-day accuracy and imprecision of quality controls (7.5, 40, 150 microg/l) were 94-99% and < 7%, respectively. Free MPAG was chromatographed on a C18 Nova-Pak column (150 mm x 3.9 mm, 5 microm) using a binary gradient over 20 min. The eluent was monitored at 254 nm. The assay was linear over the range 1-50 mg/l with the limit of quantification at 2.5 mg/l. The inter-day accuracy and imprecision of quality controls (5, 20, 45 mg/l) was 101-107% and < 8% (n = 4), respectively. For both methods no interfering substances were found in ultrafiltrate from patients not receiving MPA. The methods described have a suitable dynamic linear range to facilitate the investigation of free MPA and MPAG pharmacokinetics in transplant patients. Further, this is the first reported HPLC-UV method to determine free MPAG concentrations.  相似文献   

11.
Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (K(i)=5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC(50)=0.45 μM). Compound 4 was as potent as Gleevec (IC(50)=0.56 μM) heralded as a 'magic bullet' against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with K(i)'s lower than 100 nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.  相似文献   

12.
Human inosine 5′-monophosphate dehydrogenase 2 (hIMPDH2), being an age-old target, has attracted attention recently for anticancer drug development. Mycophenolic acid (MPA), a well-known immunosuppressant drug, was used a lead structure to design and develop modestly potent and selective analogues. The steep structure–activity relationship (SAR) requirements of the lead molecule left little scope to synthesise newer analogues. Here, newer MPA amides were designed, synthesised and evaluated for hIMPDH2 inhibition and cellular efficacy in breast, prostate and glioblastoma cell lines. Few title compounds exhibited cellular activity profile better than MPA itself. The observed differences in the overall biological profile could be attributed to improved structural and physicochemical properties of the analogues over MPA. This is the first report of the activity of MPA derivatives in glioblastoma, the most aggressive brain cancer.  相似文献   

13.
A simple and reproducible reversed-phase ion-pair high-performance liquid chromatographic (HPLC) method using isocratic elution with UV absorbance detection is presented for the simultaneous quantitation of mycophenolic acid (MPA) and MPA-glucuronide (MPAG) in human plasma and urine. The sample preparation procedures involved simple protein precipitation for plasma and 10-fold dilution for urine. Each analytical run was completed within 15min, with MPAG and MPA being eluted at 3.8 and 11.4min, respectively. The optimized method showed good performance in terms of specificity, linearity, detection and quantitation limits, precision and accuracy. This assay was demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

14.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

15.
We previously described a putative role for inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, in lipid accumulation. Here we present data which demonstrate that IMPDH activity is required for differentiation of preadipocytes into mature, lipid-laden adipocytes and maintenance of adipose tissue mass. In 3T3-L1 preadipocytes inhibition of IMPDH with mycophenolic acid (MPA) reduced intracellular GTP levels by 60% (p < 0.05) and blocked adipogenesis (p < 0.05). Co-treatment with guanosine, a substrate in the salvage pathway of nucleotide biosynthesis, restored GTP levels and adipogenesis demonstrating the specificity of these effects. Treatment of diet-induced obese mice with mycophenolate mofetil (MMF), the prodrug of MPA, for 28 days did not affect food intake or lean body mass but reduced body fat content (by 36%, p = 0.002) and adipocyte size (p = 0.03) and number. These data suggest that inhibition of IMPDH may represent a novel strategy to reduce adipose tissue mass.  相似文献   

16.
A series of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel HDACs inhibitors were designed, synthesized and evaluated. Most of these compounds displayed good to excellent inhibitory activities against HDAC1, 3, 6. The IC50 values of compound 10r against HDAC1, HDAC3, HDAC6 was 1.14 ± 0.03 nM, 3.56 ± 0.08 nM, 11.43 ± 0.12 nM. Compound 10r noticeably up-regulated the level of histone H3 acetylation compared to the SAHA. Most of the compounds showed the strong anti-proliferative activity against human cancer cell lines including RMPI8226 and HCT-116. The IC50 values of Compounds 10r and 10t against RPMI8226 was 2.39 ± 0.20 μM, 1.41 ± 0.44 μM, respectively, and the HCT-116 was sensitive to the compounds 10h, 10m, 10r, 10w with the IC50 values <1.9 μM.  相似文献   

17.
A series of azepino[3′,4′:4,5]pyrrolo[2,1-a]isoquinolin-12-ones (3a–f), that were conformationally restricted analogs of lead compound 2, were designed as potential cytotoxic compounds and synthesized using a radical oxidative aromatic substitution reaction as the key step. Compounds 3a–f were tested on five tumor cell lines to determine the conformational requirements for biological activity of compound 2. The results show that conformational restrictions on compound 2, generating the derivatives 3af, do not appreciably reduce the cytotoxic activity of 2, although compound 3d (R = Br) showed good activity against U-251 cells. Preliminary structure–activity relationship studies with these compounds revealed the importance of halogens bonded to the isoquinoline moiety. Additionally, derivatives 3f (R = NO2) and 3b (R = F) were cytotoxic to PC-3 and K-562 cells. However, none of the azepino[3′,4′:4,5]pyrrolo[2,1-a]isoquinolinones inhibited the enzymatic activity of CDK1/cyclin B, CDK5/p25, or GSK-3.  相似文献   

18.
Improved derivatives of mycophenolic acid (MPA) are necessary to reduce the frequency of adverse effects, this drug exerts in treated patients. In this study, MPA was coupled with N-(ω-hydroxyalkyl)-9-acridone-4-carboxamides or N-(ω-hydroxyalkyl)acridine-4-carboxamides to give respective ester conjugates upon Yamaguchi protocol. This esterification required protection of phenol group in MPA. Designed conjugates revealed higher potency in vitro than parent MPA. Acridine derivatives were more active than acridone analogs and length of the alkyl linker between MPA and heterocyclic units influenced the observed cytotoxicity. Derivatives 2b, 2d, 3a, 3b displayed the most promising immunosuppressive activity.  相似文献   

19.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.  相似文献   

20.
Usnic acid (UA) is the main secondary metabolite isolated from lichens, with moderate anticancer activity. A small group of (+)-UA derivatives characterized with flavanone moiety was designed and synthesized, and their anticancer activities were evaluated in leukemia cells. It was demonstrated that (+)-UA derivatives 6a6g inhibited the proliferation of leukemia cells HL-60 and K562 with low micromolar IC50 values. Mechanisms of action were investigated to find that 6g induced apoptosis in HL-60 and K562 cell lines, and affected the expression of MNK/eIF4E axis-related proteins, such as Mcl-1, p-eIF4E, p-4E-BP1. Finally, kinase inhibition assay suggested 6g was a potential inhibitor of pan-Pim kinases. Meanwhile, the blocking of phosphorylation of BAD and 4E-BP1 by 6g, together with the proposed binding mode of 6g with Pim-1 further confirmed its Pim inhibition effects. Our finding provides the sight towards the potential mechanism of (+)-UA derivatives 6g as anti-leukemia agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号