首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new series of benzothiazine-substituted quinolinediones were evaluated as inhibitors of HCV polymerase NS5B. SAR studies on this series revealed a methyl sulfonamide group as a high affinity feature. Analogues with this group showed submicromolar potencies in the HCV cell based replicon assay. Pharmacokinetic and toxicology studies were also performed on a selected compound (34) to evaluate in vivo properties of this new class of inhibitors of HCV NS5B polymerase.  相似文献   

2.
HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination regimen. Herein, we describe the discovery and characterization of silyl proline-containing HCV NS5A inhibitor MK-8325 with good pan-genotype activity and acceptable pharmacokinetic properties.  相似文献   

3.
This letter describes the discovery of a fused benzofuran scaffold viable for preparing a series of novel potent HCV NS5B polymerase non-nucleoside inhibitors. Designed on the basis of the functionalized benzofuran derivative nesbuvir (HCV-796), these compounds presumably bind similarly to the allosteric binding site in the “palm” domain of HCV NS5B protein. SAR of each potential hydrogen-bonding interaction site of this novel scaffold is discussed along with some preliminary genotypic profile and PK data of several advanced compounds.  相似文献   

4.
The isoquinolinamide series of HCV NS5A inhibitors exemplified by compounds 2b and 2c provided the first dual genotype-1a/1b (GT-1a/1b) inhibitor class that demonstrated a significant improvement in potency toward GT-1a replicons compared to that of the initial program lead, stilbene 2a. Structure–activity relationship (SAR) studies that uncovered an alternate phenylglycine-based cap series that exhibit further improvements in virology profile, along with some insights into the pharmacophoric elements associated with the GT-1a potency, are described.  相似文献   

5.
Liver fibrosis is a critical wound healing response to chronic liver injury such as hepatitis C virus (HCV) infection. If persistent, liver fibrosis can lead to cirrhosis and hepatocellular carcinoma (HCC). The development of new therapies for preventing liver fibrosis and its progression to cancer associated with HCV infection remains a critical challenge. Identification of novel anti-fibrotic compounds will provide opportunities for innovative therapeutic intervention of HCV-mediated liver fibrosis. We designed and synthesized a focused set of 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Liver fibrosis assays demonstrated that the compounds 3a and 3c show inhibitory activity towards human hepatic stellate cells (LX2) activation at 10 μM. The HCV NS3 and NS5A proteins in HCV subgenome-expressing cells were also significantly reduced in cells treated with 3a and 3c, suggesting the possible inhibitory role of the compounds in HCV translation/replication activities. We have also examined the reactivity of these compounds with medicinally-relevant metal compounds such as platinum and gold. The reactivity of these complexes with metals and during Mass Spectrometry suggests that CS bond cleavage is relatively facile.  相似文献   

6.
Judicious modifications to the structure of the previously reported HCV NS5A inhibitor 1, resulted in more potent anti-HCV compounds with similar and in some cases improved toxicity profiles. The synthesis of 19 new NS5A inhibitors is reported along with their ability to block HCV replication in an HCV 1b replicon system. For the most potent compounds chemical stability, stability in liver microsomes and inhibition of relevant CYP450 enzymes is also presented.  相似文献   

7.
A series of novel tetracyclic core-containing HCV NS5A inhibitors has been discovered. Incorporation of tetrahydropyran-substituted amino acid moiety improved their potency and yielded HCV NS5A inhibitors with a minimum potency shift from the GT1a strain compared to other genotypes and mutants. Compounds 53 and 54 showed the best potency profile and had reasonable half-times in rat PK studies. However, further optimization of their oral bioavailability is still needed in order to advance them for further development. [BMCL ABSTRACT] ©2000 Elsevier Science Ltd. All rights reserved.  相似文献   

8.
Conformational modeling has been successfully applied to the design of cyclic bioisosteres used to replace a conformationally rigid amide bond in a series of thiophene carboxylate inhibitors of HCV NS5B polymerase. Select compounds were equipotent with the original amide series. Single-point mutant binding studies, in combination with inhibition structure–activity relationships, suggest this new series interacts at the Thumb-II domain of NS5B. Inhibitor binding at the Thumb-II site was ultimately confirmed by solving a crystal structure of 8b complexed with NS5B.  相似文献   

9.
The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.  相似文献   

10.
A novel series of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors were derived from a fragment-based approach using information from X-ray crystallographic analysis of NS5B-inhibitor complexes and iterative rounds of parallel synthesis. Structure-based drug design strategies led to the discovery of potent sub-micromolar inhibitors 11ac and 12ac from a weak-binding fragment-like structure 1 as a starting point.  相似文献   

11.
Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure–activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates. In vitro evaluation of the NS5B inhibitory activity of the in-silico selected compounds resulted in 17% hit rate, identifying two novel chemotypes. Of these, compound 3, bearing the rhodanine scaffold, proved amenable for productive SAR exploration and synthetic modification. As a result, 25 derivatives that exhibited IC50 values ranging from 7.7 to 68.0 μM were developed. Docking analysis of lead compound 28 within the tetracyclic indole- and benzylidene-binding allosteric pockets (AP-1 and AP-3, respectively) of NS5B revealed topological similarities between these two pockets. Compound 28, a novel rhodanine analog with NS5B inhibitory potency in the low micromolar level range may be a promising lead for future development of more potent NS5B inhibitors.  相似文献   

12.
A new series of NS3/4A protease boronic acid inhibitors is described. The compounds show good biochemical potency and cellular activity. The peptidomimetic inhibitors were evaluated against proteases from different HCV genotypes and clinically relevant NS3/4A mutants. Compound 28 displayed subnanomolar to single digit nanomolar potencies in the enzymatic assays and an EC50 of 25 nM in the replicon cell-based assay.  相似文献   

13.
We report the use of pharmacophore-based virtual screening as an efficient tool for the discovery of novel HCV polymerase inhibitors. A three-dimensional pharmacophore model for the HCV-796 binding site, NNI site IV inhibitor, to the enzyme was built by means of the structure-based focusing module in Cerius2 program. Using these models as a query for virtual screening, we produced a successful example of using pharmacophore-based virtual screening to identify novel compounds with HCV replicon assay through inhibition of HCV polymerization. Among the hit compounds, compounds 1 and 2 showed 56% and 48% inhibition of NS5B polymerization activity at 20 μM, respectively. In addition, compound 1 also exhibited replicon activity with EC50 value of 2.16 μM. Following up the initial hit, we obtained derivatives of compound 1 and evaluated polymerization inhibition activity and HCV replicon assay. These results provide information necessary for the development of more potent NS5B inhibitors.  相似文献   

14.
Hepatitis C virus (HCV) NS5B polymerase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Several novel and potent HCV NS5B non-nucleoside inhibitors with unique tetracyclic bezonfuran-based structures were prepared and evaluated. Similar to clinical developmental compound MK-8876, N-linked (compounds 1 and 2) and C-linked (compounds 3 and 4) tetracyclic structures maintained broad spectrum anti-replicon potency profiles and demonstrated moderate to excellent oral bioavailability and pharmacokinetic parameters across the three preclinical animal species. To better understand the importance of tetracyclic structures related to pan genotypic potency profiles especially against clinically relevant GT1a variants, the teracycles with different ring size were prepared and in vitro evaluations suggested compounds with six number ring have better overall potency profiles.  相似文献   

15.
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.  相似文献   

16.
A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.  相似文献   

17.
18.
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9–34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.  相似文献   

19.
A novel unsymmetrical structural class of HCV NS5A inhibitors showing picomolar range antiviral activity has been identified. An unsymmetrical lead compound 2, generated from a substructure of a known symmetrical inhibitor 1, was optimized by extension of its substituents to interact with the hitherto unexplored site of the target protein. This approach afforded novel highly potent unsymmetrical inhibitor 20, which not only equally inhibited HCV genotypes1a, 1b, and 2a with EC50 values in the picomolar range, but also inhibited the 1a Q30K mutant induced by a launched symmetrical inhibitor daclatasvir with an EC50 in the low nanomolar range.  相似文献   

20.
An unprecedented series of organometallic HCV (hepatitis C virus) NS5A (nonstructural 5A protein) replication complex inhibitors that incorporates a 1,1′-ferrocenediyl scaffold was explored. This scaffold introduces the elements of linear flexibility and non-planar topology that are unconventional for this class of inhibitors. Data from 2-D NMR spectroscopic analyses of these complexes in solution support an anti (unstacked) arrangement of the pharmacophoric groups. Several complexes demonstrate single-digit picomolar in vitro activity in an HCV genotype-1b replicon system. One complex to arise from this investigation (10a) exhibits exceptional picomolar activity against HCV genotype 1a and 1b replicons, low hepatocellular cytotoxicity, and good pharmacokinetic properties in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号