首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
To elucidate mechanism of ganglioside neuroprotection, it is important to study their metabolic effects, specifically of action on Na+,K+-ATPase. It has been shown that under effect of oxidative stress inductors and neurotoxins an oxidative inactivation of this enzyme takes place in PC12 cells and brain cortex synaptosomes, this inactivation being able to be prevented or decreased by ganglioside GM1. Thus, for instance, 24 h after action of 1 mM H2O2, activity of Na+,K+-ATPase in PC12 cells decreased more than twice. However, in the case of preincubation of the cells with ganglioside GM1 prior to the H2O2 action, this enzyme activity did not differ statistically significantly from control. Ganglioside GM1 also was able to increase statistically significantly the enzyme activity decreased by action on the PC12 cells of amyloid β-peptide (Aβ) causing lesion of neurons in Alzheimer’s disease and of low H2O2 concentrations. Experiments on brain cortex synaptosomes have established that not only antioxidants—α-tocopherol and superoxide dismutase (SOD)—but also ganglioside GM1 prevent the glutamate-produced Na+,K+-ATPase oxidative inactivation. The obtained data agree with a suggestion that the ganglioside neuroprotective effect at action on nerve cells of such toxins as Aβ, glutamate or reactive oxygen species is due to their ability to inhibit the free-radical reactions.  相似文献   

2.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

3.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

4.
Recent studies demonstrate that cytotoxic actions of ouabain and other cardiotonic steroids (CTS) on renal epithelial cells (REC) are triggered by their interaction with the Na+,K+-ATPase α-subunit but not the result of inhibition of Na+,K+-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. This study examined the role of mitogen-activated protein kinases (MAPK) in the death of ouabain-treated REC. Exposure of C7-MDCK cells that resembled principal cells from canine kidney to 3 μM ouabain led to phosphorylation of p38 without significant impact on phosphorylation of ERK and JNK MAPK. Maximal increment of p38 phosphorylation was observed at 4 h followed by cell death at 12 h of ouabain addition. In contrast to ouabain, neither cell death nor p38 MAPK phosphorylation were affected by elevation of the [Na+]i/[K+]i ratio triggered by Na+,K+-ATPase inhibition in K+-free medium. p38 phosphorylation was noted in all other cell types exhibiting death in the presence of ouabain, such as intercalated cells from canine kidney and human colon rectal carcinoma cells. We did not observe any action of ouabain on p38 phosphorylation in ouabain-resistant smooth muscle cells from rat aorta and endothelial cells from human umbilical vein. Both p38 phosphorylation and death of ouabain-treated C7-MDCK cells were suppressed by p38 inhibitor SB 202190 but were resistant to its inactive analogue SB 202474. Our results demonstrate that death of CTS-treated REC is triggered by Nai+,Ki+—independent activation of p38 MAPK.  相似文献   

5.
Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.  相似文献   

6.
Prostagladin A2, which prevents intestinal ulcers produced by administration of nonsteroidal antiinflammatory compounds such as indomethacin, inhibited the Na+,K+-ATPase activity in basolateral plasma membrane of rat intestine significantly. Prostaglandin A2 inhibited mainly the Na+-dependent phosphorylation step in the overall reaction of Na+,K+-ATPase. This decrease of the Na+,K+-ATPase activity by prostaglandin A2 was due to the decrease of Vmax of the enzyme and of the affinity of the enzyme for Na+. It was also suggested that the presence of both Δ5,6 and Δ10,11 structure of prostaglandin A2 may be necessary for the inhibition of the Na+,K+-ATPase activity.  相似文献   

7.
This study examined the role of cell volume modulation in plasma membrane rupture and death documented in ouabain-treated renal epithelial cells. Long-term exposure to ouabain caused massive death of C11-MDCK (Madin-Darby canine kidney) epithelial cells, documented by their detachment, chromatin cleavage and complete loss of lactate dehydrogenase (LDH), but did not affect the survival of vascular smooth muscle cells (VSMCs) from the rat aorta. Unlike the distinct impact on cell survival, 2-h exposure to ouabain led to sharp elevation of the [Na+]i/[K+]i ratio in both cell types. A similar increment of Nai+ content was evoked by sustained inhibition of Na+,K+-ATPase in K+-free medium. However, in contrast to ouabain, C11-MDCK cells survived perfectly during 24-h exposure to K+-free medium. At 3 h, the volume of ouabain-treated C11-MDCK cells and VSMCs, measured by the recently developed dual-image surface reconstruction technique, was increased by 16 and 12%, respectively, whereas 5–10 min before the detachment of ouabain-treated C11-MDCK cells, their volume was augmented by ~30–40%. To examine the role of modest swelling in the plasma membrane rupture of ouabain-treated cells, we compared actions of hypotonic medium on volume and LDH release. We observed that LDH release from hyposmotically swollen C11-MDCK cells was triggered when their volume was increased by approximately fivefold. Thus, our results showed that the rupture of plasma membranes in ouabain-treated C11-MDCK cells was not directly caused by cell volume modulation evoked by Na+,K+-ATPase inhibition and inversion of the [Na+]i/[K+]i ratio.  相似文献   

8.
K+-Cl cotransporter-3 has two major amino terminal variants, KCC3a and KCC3b. In LLC-PK1 cells, exogenously expressed KCC3a co-immunoprecipitated with endogenous Na+,K+-ATPase α1-subunit (α1NaK), accompanying significant increases of the Na+,K+-ATPase activity. Exogenously expressed KCC3b did not co-immunoprecipitate with endogenous α1NaK inducing no change of the Na+,K+-ATPase activity. A KCC inhibitor attenuated the Na+,K+-ATPase activity in rat gastric mucosa in which KCC3a is predominantly expressed, while it had no effects on the Na+,K+-ATPase activity in rat kidney in which KCC3b is predominantly expressed. In these tissue samples, KCC3a co-immunoprecipitated with α1NaK, while KCC3b did not. Our results suggest that the NH2-terminus of KCC3a is a key region for association with α1NaK, and that KCC3a but not KCC3b can regulate the Na+,K+-ATPase activity.  相似文献   

9.
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25–1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons.  相似文献   

10.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

11.
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.  相似文献   

12.
Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+–K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+–K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+–K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+–K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL.  相似文献   

13.
The mechanism of action of the cytotoxic protein P6 isolated from cobra venom (Naja naja) which shows preferential cytotoxicity particularly to Yoshida sarcoma cells has been studied by its effects on the membrane-bound enzyme (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of a variety of cell systems. Evidence obtained with Yoshida sarcoma cells, dog and human erythrocytes and three tissue culture cell lines KB (human oral carcinoma), Hela (human cervix carcinoma) and L-132 (human lung embryonic) shows that inhibition of (Na+ + K+)-ATPase by the P6 protein can be correlated with its lytic activity. (Na+ + K+)-ATPase of Yoshida sarcoma membrane fragments inactivated by P6 protein could be reconstituted by the addition of phosphatidylserine and phosphatidic acid. It is conceivable that lysis of cells by the P6 protein may be due to an imbalance of K+ and Na+ in the cell which leads to swelling and disintegration of the membrane structure. Observations indicate that the P6 protein combines with membrane constituents of susceptible cells. The overall evidence suggests that both the specificity of its protein structure and the highly basic nature of the P6 protein are factors which enable it to compete with the lipid moiety maintaining the (Na+ + K+)-ATPase of the susceptible cells in proper conformation for activity.  相似文献   

14.
The mechanisms of cell death signaling triggered by cardiotonic steroids are poorly understood. Based on massive detachment of ouabain-treated Madin-Darby canine kidney (MDCK) cells, it may be proposed that the cytotoxic action of these compounds is mediated by anoikis, i.e. a particular mode of death occurring in cells lacking cell-to-extracellular matrix interactions. We tested this hypothesis. Six hour incubation of MDCK cells with ouabain, marinobufagenin or K+-free medium almost completely blocked Na+,K+-ATPase, increased Nai+ content by ∼10-fold and suppressed cell attachment to regular-plastic-plates by up to 5-fold. In contrast, the death of attached cells was observed after 24-h incubation with ouabain but not in the presence of marinobufagenin or K+-free medium. Cells treated with ouabain and undergoing anoikis on ultra-low attachment plates exhibited different cell volume behaviour, i.e. swelling and shrinkage, respectively. The pan-caspase inhibitor z-VAD.fmk and the protein kinase C activator PMA rescued MDCK cells from anoikis but did not influence the survival of ouabain-treated cells, whereas medium acidification from pH 7.2 to 6.7 almost completely abolished the cytotoxic action of ouabain, but did not significantly affect anoikis. Our results show that the Na i+,Ki+-independent mode of MDCK cell death evoked by ouabain is not mediated by anoikis.  相似文献   

15.
Summary Antibodies which were raised against highly purified membrane-bound (Na+–K+)-ATPase from the outer medulla of rat kidneys inhibit the (Na+–K+)-ATPase activity up to 95%. The antibody inhibition is reversible. The time course of enzyme inhibition and reactivation is biphasic in semilogarithmic plots.In the purified membrane-bound (Na+–K+)-ATPase negative cooperativity was observed (a) for the ATP dependence of the (Na+–K+)-ATPase activity (n=0.86), (b) for the ATP binding to the enzyme (n=0.58), and (c) for the ouabain inhibition of the (Na+–K+)-ATPase activity (n=0.77). By measuring the Na+ dependence of the (Na+–K+-ATPase reaction, a positive homotropic cooperativity (n=1.67) was found.As reactivation of the antibody-inhibited enzyme proceeds very slowly (t 0.5=5.2hr), it was possible to measure characteristics of the antibody-(Na+–K+)-ATPase complex: The antibodies exerted similar effects on the ATP dependence of the (Na+–K+)-ATPase reaction and on the ATP binding of the enzyme.V max of the (Na+–K+)-ATPase reaction and the number of ATP binding sites were reduced whileK 0.5 ATP for the (Na+–K+)-ATPase activity and for the ATP binding were increased by the antibodies. The Hill coefficients for the ATP binding and for the ATP dependence of the enzyme activity were not significantly altered by the antibodies. The antibodies increased theK 0.5 value for the Na+ stimulation of the (Na+–K+)-ATPase activity, but they did not alter the homotropic interactions between the Na+-binding sites. The negative cooperativity which was observed for the ouabain inhibition of the (Na+–K+)-ATPase activity was abolished by the antibodies.The data are tentatively explained by the following model: The antibodies bind to the (Na+–K+)-ATPase from the inner membrane side, reduce the ATP binding symmetrically at the ATP binding sites and reduce thereby also the (Na+–K+)-ATPase activity of the enzyme. The antibodies may inhibit the ATP binding by a direct interaction or by means of a conformational change at the ATP binding sites. This may possibly also lead to the alteration of the Na+ dependence of the (Na+–K+)-ATPase activity and to the observed alteration of the dose response to the ouabain inhibition.  相似文献   

16.
Although antiretroviral therapy is highly effective in suppressing human immunodeficiency virus type-1 (HIV) replication, treatment has failed to eliminate viral reservoirs and discontinuation of treatment results in viral reactivation. Here, we demonstrate that peptides Tat-vFLIP-α2 and Tat-Beclin 1/BECN1 which have been shown to induce a Na+/K+-ATPase- and a macroautophagy/autophagy-dependent form of cell death, autosis, can preferentially kill HIV-infected macrophages while preventing virological rebound. To improve bioavailability and drug delivery, Tat-vFLIP-α2 was encapsulated into biodegradable PLGA (poly lactic-co-glycolic acid)-lipid-PEG (polyethylene glycol) nanoparticles for long-lasting intracellular delivery. After a single dose of NP-vFLIP-α2, HIV-infected macrophages were preferentially killed in a dose-dependent manner compared to uninfected or untreated HIV-infected cells with complete inhibition of HIV infection at 10 μM of peptide. HIV-infected macrophages treated with NP-vFLIP-α2 exhibited increased markers of autophagy including LC3B lipidation, SQSTM1/p62 degradation and Na+/K+-ATPase expression compared to untreated uninfected or infected cells. Moreover, the increased cell death observed in HIV-infected cells was not altered by treatment with bafilomycin A1 (BAF) or the caspase inhibitor Z-VAD-FMK, but could be reversed following treatment with the Na+/K+-ATPase inhibitor, digoxin, or knockdown of ATG5 or ATG7. NP-vFLIP-α2 induced preferential killing was also detected in HIV-infected macrophages under antiretroviral suppression without inducing viral reactivation. Additionally, we found that Na+/K+-ATPase was upregulated in HIV-infected cells, which enhanced NP-vFLIP-α2 induced cell death. These findings provide a novel strategy to eradicate HIV-infected macrophages by selectively killing infected cells through the induction of Na+/K+-ATPase dependent autophagy, while preventing reactivation of virus and new infection of uninfected bystander cells.  相似文献   

17.
Low concentrations of cardiac glycosides including ouabain, digoxin, and digitoxin block cancer cell growth without affecting Na+,K+-ATPase activity, but the mechanism underlying this anti-cancer effect is not fully understood. Volume-regulated anion channel (VRAC) plays an important role in cell death signaling pathway in addition to its fundamental role in the cell volume maintenance. Here, we report cardiac glycosides-induced signaling pathway mediated by the crosstalk between Na+,K+-ATPase and VRAC in human cancer cells. Submicromolar concentrations of ouabain enhanced VRAC currents concomitantly with a deceleration of cancer cell proliferation. The effects of ouabain were abrogated by a specific inhibitor of VRAC (DCPIB) and knockdown of an essential component of VRAC (LRRC8A), and they were also attenuated by the disruption of membrane microdomains or the inhibition of NADPH oxidase. Digoxin and digitoxin also showed anti-proliferative effects in cancer cells at their therapeutic concentration ranges, and these effects were blocked by DCPIB. In membrane microdomains of cancer cells, LRRC8A was found to be co-immunoprecipitated with Na+,K+-ATPase α1-isoform. These ouabain-induced effects were not observed in non-cancer cells. Therefore, cardiac glycosides were considered to interact with Na+,K+-ATPase to stimulate the production of reactive oxygen species, and they also apparently activated VRAC within membrane microdomains, thus producing anti-proliferative effects.  相似文献   

18.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

19.
Despite the growing interest in the antitumor effect of cardiotonic steroids, combination treatments with well-established chemotherapy drugs like paclitaxel have been rarely investigated. Moreover, paclitaxel has been suggested as a Na+/K+-ATPase inhibitor. Here we investigated the effect of paclitaxel and digoxin alone or in combination on the viability of human lung (A549) and cervical cancer (HeLa) cell lines and the inhibitory effect of paclitaxel on several mammalian Na+/K+-ATPases. Although the viability of both tumor cell lines was concentration-dependently affected by digoxin treatment after 48 hours (A549 IC50 = 31 nM and HeLa IC50 = 151 nM), a partial effect was observed for paclitaxel, with a maximal inhibitory effect of 45% at 1000 nM with A549 and around 70% with HeLa cells (IC50 = 1 nM). Although the two drugs were cytotoxic, their combined effect in HeLa cells was revealed to be antagonistic, as estimated by the combination index. No direct inhibitory effect of paclitaxel was detected in human, pig, rat, and mouse Na+/K+-ATPase enzymes, but high concentrations of paclitaxel decreased the Na+/K+-ATPase activity in HeLa cells after 48 hours without affecting protein expression. Our findings demonstrate that, under our conditions, paclitaxel and digoxin cotreatment produce antagonistic cytotoxic effects in HeLa cells, and the mechanism of action of paclitaxel does not involve a direct inhibition of Na+/K+-ATPase. More studies shall be designed to evaluate the consequences of the interaction of cardiotonic steroids and chemotherapy drugs.  相似文献   

20.
The structure-activity relationships of the genin moieties of digitalis glycosides are commonly elucidated by determining the inhibitory potency of a variety of genins toward the plasma membrane Na+, K+-ATPase; qualitatively these relationships appear to be fairly independent of the specific Na+, K+-ATPase preparation utilized for the analysis. To determine whether this is the case with regard to the sugar moieties of glycosides, the inhibitory effects of 12 monoglycosides of digitoxigenin toward four Na+, K+-ATPase preparations of different origin were measured. It was found that while recognition of the major structural determinants of sugar activity appeared to be independent of enzyme source, recognition of the minor structural determinants of activity showed some source dependence. It was also observed that the intrinsic sensitivity to sugar potentiation may be source dependent and unrelated to intrinsic sensitivity to inhibition by digitoxigenin. These observations are compatible with a model of the Na+, K+-ATPase sugar binding site(s) in which intrinsic sensitivity to sugar attachment as well as recognition characteristics (for sugar structural features) both determine the extent to which a sugar moiety may contribute to the activity of monoglycosides. Further, in these studies one of the Na+, K+-ATPase preparations employed was obtained from rat brain, a tissue known to contain a mixture of ouabain sensitive and insensitive isoforms. We have observed that the rigorous purification techniques employed appear to have selectively removed from or denatured the less ouabain sensitive al isoform found in this enzyme preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号