首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New fluorescent excimer-forming 5′-bispyrene molecular beacons for the detection of RNA were designed. The probes are 2′-O-methyl RNAs containing 5′-bispyrenylmethylphosphorodiamidate group (bispyrene group) at the 5′-end and a fluorescence quencher (BHQ1) at the 3′-end. A comparative study of the fluorescent properties of the probes having different distance between 5′-bispyrene group and target RNA upon the formation of hybridization complex was performed. The probes with bispyrene group located in the close proximity to the duplex exhibit the greatest excimer fluorescence upon binding to a complementary the 43-nt target RNA, in contrast to the probes with 5′-bispyrene group at dangling end. The feasibility of the new probes for visualization of intracellular RNA was demonstrated using 28S rRNA as a target. The results obtained confirm that the probes proposed in the study can be used as selective tools for RNA detection.  相似文献   

2.
We have established that 5′-CG-3′ dinucleotide and 5′-CNG-3′ trinucleotide are found in published sequences of small interfering RNA and microRNA more often than they should be in random DNA sequences. This circumstance indicates the important biological role played by 5′-CG-3′ dinucleotides and 5′-CNG-3′ trinucleotides in small RNA sequences. We suggest that small RNAs containing these di- and trinucleotides participate in the creation of chromatin marks of epigenetic information through a highly specific search for repressible DNA sequences and through the initiation of the methylation de novo of 5′-CG-3′ and 5′-CNG-3′ sites in DNA fragments appearing to be bound complementary to small RNAs. Several genes can be inactivated simultaneously if they contain the motif recognized by small RNA. Allelic exclusion appears, in our opinion, as a result of initiation by small RNAs of DNA methylation de novo of all but one of the alleles that exist in the cell. The predecessor of this small RNA is transcribed from the antiparallel allele chain. Alleles whose antiparallel chains are less actively read by RNA polymerase, which, as we suggest, in the process of transcribing, releases DNA from small RNA bound to it, are inactivated. However, the quantity of small RNA transcribed from only one allele is insufficient to overcome the level above which the repression process of this allele is initiated de novo.  相似文献   

3.
Abstract

We report on the three dimensional structure of an RNA hairpin containing a 2′,5′-linked tetraribonucleotide loop, namely, 5′-rGGAC(UUCG)GUCC-3′ (where UUCG = U2′p5′U2′p5′C2′p5′G2′p5′). We show that the 2′,5′-linked RNA loop adopts a conformation that is quite different from that previously observed for the native 3′,5′-linked RNA loop. The 2′,5′- RNA loop is stabilized by (a) U:G wobble base pairing, with both bases in the anti conformation, (b) extensive base stacking, and (c) sugar–base contacts, all of which contribute to the extra stability of this hairpin structure.  相似文献   

4.
5.

We have investigated the effect of switching ribose to deoxyribose at the closing base-pair of an extra-stable RNA hairpin. Specifically, we studied the sequence 5′-GGAC(UUCG)GUCC, a dodecanucleotide that folds into a well-characterized, “extra stable” RNA hairpin structure. Recently, we showed that hairpins containing a 2′,5′-linked (UUCG) loop instead of the native 3′,5′-linked loop also exhibit extra-stability (Hannoush and Damha, J. Am. Chem. Soc., 2001, 123, 12368–12374). In this article, we show that the ribose units located at the loop-closing positions (i.e., rC 4 and rG 9 ) contribute significantly to the stabilization of RNA hairpins, particularly those containing the 3′,5′-UUCG loop. Interestingly, the requirement of rC4 and rG9 is more relaxed for DNA hairpins containing the 2′,5′-UUCG loop and, in fact, they may be replaced altogether (ribose → deoxyribose) without affecting stability. The results broaden our understanding of the behavior of highly stable (UUCG) hairpin loops and how they respond to structural perturbation of the loop-closing base pairs.  相似文献   

6.
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

7.
8.
9.
10.
11.
Molecular beacons as probes of RNA unfolding under native conditions   总被引:4,自引:0,他引:4  
Hybridization of fluorescent molecular beacons provides real-time detection of RNA secondary structure with high specificity. We used molecular beacons to measure folding and unfolding rates of the Tetrahymena group I ribozyme under native conditions. A molecular beacon targeted against 15 nt in the 5′ strand of the P3 helix specifically hybridized with misfolded forms of the ribozyme, without invading the native tertiary structure. The beacon associated with the misfolded ribozyme 300 times more slowly than with an unstructured oligonucleotide containing the same target sequence, suggesting that the misfolded ribozyme core remains structured in the absence of Mg2+. The rate of beacon hybridization under native conditions revealed a linear relationship between the free energy of unfolding and Mg2+ concentration. A small fraction of the RNA population unfolded very rapidly, suggesting parallel unfolding in one step or through misfolded intermediates.  相似文献   

12.

Background

While the RNA world hypothesis is widely accepted, it is still far from complete: the existence of self-replicating ribozyme, consisting of potentially hundreds of nucleotides, is a core assumption for the majority of RNA world models. The appearance of such long RNA molecules under prebiotic conditions is not self-evident. Recombination seems to be a plausible way of creating RNA diversity, resulting in the appearance of functional RNAs, capable of self-replicating.

Methods

We report here on the study of recombination process modelled with two 96 nts RNA fragments. Detection of recombination products was performed with RT-PCR followed by TA-cloning and Sanger sequencing.

Results

A wide range of recombinant products was detected. We found that (i) the most efficient ligation was observed for RNA species forming bulges or internal loops, with ligation partners located within the loop; (ii) a strong preference was observed for formation of a few types of major products with a large variety of minor products; (iii) ligation could occur with participation of either 2′,3′-cyclophosphate or 5′-ppp; (iv) the presence of key reaction components, i.e. 5′ppp-RNAs, enabled the formation of additional types of product; (v) molecular dynamics simulations of one of the most abundant products suggests that the ligation results in a preferable formation of 2′-5′- rather than 3′-5′-linkages.

Conclusions

The study demonstrates regularities of new RNA molecules formation with non-enzymatic recombination process.

General significance

Our findings provide new data supporting the RNA World hypothesis and show the way of new RNA sequences emergence under prebiotic conditions.  相似文献   

13.
RNA interference is a powerful tool for gene functional analysis in mammals. Permanent gene suppression can be achieved by siRNAs as stem-loop precursors transcribed from RNA Pol III promoter such as H1 and U6 based on vector. This approach, however, has a major limitation: inhibition can not be controlled in a time or tissue specific manner because the RNA Pol III promoter is not time or tissue specific. To overcome these limitations, we designed a strategy that allows synthesis of small hairpin RNAs in a GFP-fused form mediated by RNA Pol II promoter CMV to efficiently and specifically knock down expression of both exogenous and endogenous genes in mammalian cells. As assayed by both fluorescence observing and quantitative RT-PCR, the protein and mRNA products of exogenous gene RFP were efficiently and specifically inhibited; quantitative RT-PCR and western blotting results respectively demonstrated that endogenous lamin B2 mRNA and protein was suppressed without global down-regulation of protein synthesis. Furthermore, GFP-fused shRNA efficacy for RNAi is dependent on target position based on this vector system. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in mammalian system. Jing Yuan, Xiaobo Wang and Ning Li - These authors contributed equally to this work.  相似文献   

14.
15.
New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2'-O-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2'-O-methyl RNA chimera oligonucleotides "tiny molecular beacons". We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for oskar mRNA and microinjected them into living Drosophila melanogaster oocytes. We then imaged the live oocytes via spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions.  相似文献   

16.
17.
18.
19.
20.
The 3′-deoxy and 3′ -0-methyl analogs of the standard ribonucleoside triphosphates were found to act as base-specific chain terminators of RNA synthesis mediated by the T3 RNA polymerase. Because this enzyme initiates RNA synthesis at a unique site within its promoter sequence, all RNA chains initiated at a cloned promoter have a common 5′ terminus. The specifically terminated products that are made in the presence of the analogs may be resolved by gel electrophoresis, permitting the determination of the nucleotide sequence of the DNA template from which the RNA was transcribed. These findings demonstrate that the T3 RNA polymerase can provide the basis of a useful method for determining the sequence of double-stranded DNA templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号