首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.  相似文献   

2.
3.
Pyrethroid resistance in mosquitoes   总被引:3,自引:0,他引:3  
Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.  相似文献   

4.
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.  相似文献   

5.
IntroductionIn Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels.Materials and methodsIn this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes.ResultsMosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression.ConclusionsIn this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures.  相似文献   

6.
Current vector control programs are largely dependent on pyrethroids, which are the most commonly used and only insecticides recommended by the World Health Organization for insecticide-treated nets (ITNs). However, the rapid spread of pyrethroid resistance worldwide compromises the effectiveness of control programs and threatens public health. Since few new insecticide classes for vector control are anticipated, limiting the development of resistance is crucial for prolonging efficacy of pyrethroids. In this study, we exposed a field-collected population of Culex pipiens pallens to different insecticide selection intensities to dynamically monitor the development of resistance. Moreover, we detected kdr mutations and three detoxification enzyme activities in order to explore the evolutionary mechanism of pyrethroid resistance. Our results revealed that the level of pyrethroid resistance was proportional to the insecticide selection pressure. The kdr and metabolic resistance both contributed to pyrethroid resistance in the Cx. pipiens pallens populations, but they had different roles under different selection pressures. We have provided important evidence for better understanding of the development and mechanisms of pyrethroid resistance which may guide future insecticide use and vector management in order to avoid or delay resistance.  相似文献   

7.
Insecticides belonging to the pyrethroid family are the only compounds currently available for the treatment of mosquito nets. Unfortunately, some malaria vector species have developed resistance to pyrethroids and the lack of alternative chemical categories is a great concern. One strategy for resistance management would be to treat mosquito nets with a mixture associating two insecticides having different modes of action. This study presents the results obtained with insecticide mixtures containing several proportions of bifenthrin (a pyrethroid insecticide) and carbosulfan (a carbamate insecticide). The mixtures were sprayed on mosquito net samples and their efficacy were tested against a susceptible strain of Anopheles gambiae, the major malaria vector in Africa. A significant synergism was observed with a mixture containing 25 mg/m2 of bifenthrin (half the recommended dosage for treated nets) and 6.25 mg/m2 of carbosulfan (about 2% of the recommended dosage). The observed mortality was significantly more than expected in the absence of any interaction (80% vs 41%) and the knock-down effect was maintained, providing an effective barrier against susceptible mosquitoes.  相似文献   

8.
Use of malathion for mosquito control in Cuba for 7 years up to 1986 has selected for elevated non-specific esterase and altered acetylcholinesterase (AChE) resistance mechanisms in populations of the pest mosquito Culex quinquefasciatus Say. These mechanisms are still present in relatively high frequencies in the Havana area, despite the replacement of malathion by pyrethroid insecticides for the last 3 years in the mosquito control programme. Samples of Culex quinquefasciatus populations from within a 100 km radius of Havana had high levels of resistance to malathion and lower levels of resistance to propoxur, but there was little or no cross-resistance to the organophosphorus insecticide pirimiphos-methyl. Selection with malathion for twenty-two consecutive generations in the laboratory increased the level of malathion resistance to 1208-fold and propoxur level to 1002-fold, but the maximum level of pirimiphos-methyl resistance was only 11-fold. Pirimiphos-methyl is still operationally effective, despite the resistance mechanisms segregating, so this insecticide if used for control is unlikely to select either of the known resistance factors directly in the field population. Since 1986, pyrethroids have been used extensively, and low levels of pyrethroid resistance were detected in two of five field population samples tested. Malathion selection did not increase the level of pyrethroid resistance, which indicates that one or more distinct pyrethroid resistance factors are now being selected in the field populations of Culex quinquefasciatus.  相似文献   

9.
Pyrethroid-treated bednets are the most promising available method of controlling malaria in the tropical world. Every effort should be made to find methods of responding to, or preventing, the emergence of pyrethroid resistance in the Anopheles vectors. Some cases of such resistance are known, notably in An. gambiae in West Africa where the kdr type of resistance has been selected, probably because of the use of pyrethroids on cotton. Because pyrethroids are irritant to mosquitoes, laboratory studies on the impact of, and selection for, resistance need to be conducted with free-flying mosquitoes in conditions that are as realistic as possible. Such studies are beginning to suggest that, although there is cross-resistance to all pyrethroids, some treatments are less likely to select for resistance than others are. Organophosphate, carbamate and phenyl pyrazole insecticides have been tested as alternative treatments for nets or curtains. Attempts have been made to mix an insect growth regulator and a pyrethroid on netting to sterilize pyrethroid-resistant mosquitoes that are not killed after contact with the netting. There seems to be no easy solution to the problem of pyrethroid resistance management, but further research is urgently needed.  相似文献   

10.
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.  相似文献   

11.
Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public–private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6–9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim will be needed if current gains in malaria control are not to be reversed.  相似文献   

12.
A new approach is proposed in the treatment of mosquito nets, using a 'two-in-one' combination of pyrethroid and non-pyrethroid insecticides applied to different parts of bednets. The objectives are mainly to overcome certain limitations of pyrethroid-impregnated bednets currently recommended for malaria control purposes. Apart from developing alternatives to pyrethroid dependency, we sought to counteract pyrethroid irritant effects on mosquitoes (excito-repellency) and resistance to pyrethroids. The idea takes advantage of the presumed host-seeking behaviour of mosquitoes confronted by a net draped over a bed, whereby the mosquito may explore the net from the top downwards. Thus, nets could be more effective if treated on the upper part with residual non-irritant insecticide (carbamate or organophosphate) and with a pyrethroid on the lower part. Sequential exposure to different insecticides with distinct modes of action is equivalent to the use of a mixture as a potential method of managing insecticide resistance. We also intended to improve the control of nuisance mosquitoes, especially Culex quinquefasciatus Say (Diptera: Culicidae) that often survive pyrethroids, in order to encourage public compliance with use of insecticide-treated nets (ITNs). Polyester bednets were pretreated with residual pyrethroid (bifenthrin 50 mg/m2 or deltamethrin 25 mg/m2) on the lower half and with carbamate (carbosulfan 300 mg/m2) on the upper half to minimize contact with net users. Unreplicated examples of these 'two-in-one' treated nets were field-tested against wild mosquitoes, in comparison with an untreated net and bednets treated with each insecticide alone, including PermaNet wash-resistant formulation of deltamethrin 50 mg/m2. Overnight tests involved volunteers sleeping under the experimental bednets in verandah-trap huts at Yaokofikro, near Bouaké in C te d'Ivoire, where the main malaria vector Anopheles gambiae Giles, as well as Culex quinquefasciatus Say, are highly resistant to pyrethroids. Efficacy of these ITNs was assessed in the huts by four entomological criteria: deterrency and induced exophily (effects on hut entry and exit), blood-feeding and mortality rates (immediate and delayed). Overall, the best impact was achieved by the bednet treated with carbosulfan alone, followed by 'two-in-one' treatments with carbosulfan plus pyrethroid. Blood-feeding rates were 13% An. gambiae and 17% Cx. quinquefasciatus in huts with untreated nets, but only 3% with carbosulfan ITNs, 7-11% with combined ITN treatment, 6-8% An. gambiae and 12-14% Cx. quinquefasciatus with pyrethroid alone. Mosquitoes that entered the huts were killed sooner by nets with combined treatment than by pyrethroid alone. Mortality-rates in response to ITNs with carbosulfan (alone or combined with pyrethroid) were significantly greater for Cx. quinquefasciatus, but not for An. gambiae, compared to ITNs with only pyrethroid. About 20% of sleepers reported potential side-effects (headache and/or sneezing) from use of ITN treated with carbosulfan alone. Further development of this new 'two-in-one' ITN concept requires a range of investigations (choice of effective products, cost-benefit analysis, safety, etc.) leading to factory production of wash-resistant insecticidal nets treated with complementary insecticides.  相似文献   

13.
Aedes aegypti (L.) is an important mosquito vector of emerging arboviruses such as Zika, dengue, yellow fever, and chikungunya. To quell potential disease outbreaks, its populations are controlled by applying pyrethroid insecticides, which selection pressure may lead to the development of insecticide resistance. Target site insensitivity to pyrethroids caused by non-synonymous knockdown resistance (kdr) mutations in the voltage-gated sodium (NaV) channel is a predominant mechanism of resistance in mosquitoes. To evaluate the potential impact of pyrethroid resistance on vector control, Ae. aegypti eggs were collected from eight mosquito control operational areas in Harris County, Texas, and emerged females were treated in field tests at four different distances from the pyrethroid Permanone 31–66 source. The females were genotyped by melting curve analyses to detect two kdr mutations (V1016I and F1534C) in the NaV channel. Harris County females had higher survivorship rates at each distance than the pyrethroid-susceptible Orlando strain females. Survivorship increased with distance from the pyrethroid source, with 39% of field-collected mosquitoes surviving at 7.62 m and 82.3% at 22.86 m from the treatment source. Both the V1016I and F1534C pyrethroid resistant genotypes were widely distributed and at high frequency, with 77% of the females being double homozygous resistant (II/CC), this being the first report of kdr mutations in Ae. aegypti in Harris County. Analysis of the probability of survival for each mutation site independently indicated that the CC genotype had similar probability of survival as the FC heterozygous, while the II genotype had higher survival than both the VI and VV, that did not differ. The double homozygous resistant genotype (II/CC) had the highest probability of survival. A linear model estimated probability of survival for areas and genotypes. The high frequency and widespread distribution of double-homozygote pyrethroid-resistant Ae. aegypti may jeopardize disease vector control efforts in Harris County.  相似文献   

14.
Anopheles funestus Giles has been implicated as a major malaria vector in sub-Saharan Africa where pyrethroid insecticides are widely used in agriculture and public health. Samples of this species from northern Kwazulu/Natal in South Africa and the Beluluane region of southern Mozambique showed evidence of resistance to pyrethroid insecticides. Insecticide exposure, synergist and biochemical assays conducted on A. funestus suggested that elevated levels of mixed function oxidases were responsible for the detoxification of pyrethroids in resistant mosquitoes in these areas. The data suggested that this mechanism was also conferring cross-resistance to the carbamate insecticide propoxur.  相似文献   

15.
In Mexico, mosquito vector‐borne diseases are of public health concern as a result of their impact on human morbidity and mortality. The use of insecticides against adult mosquitoes is one of the most common ways of controlling mosquito population densities. However, the use of these compounds has resulted in the development of insecticide resistance. The aim of this study was to estimate susceptibility to six pyrethroids, two carbamates and two organophosphates in Mexican populations of Stegomyia aegypti (Linnaeus, 1762) (= Aedes aegypti) (Diptera: Culicidae) mosquitoes. Bottle insecticide susceptibility tests, with 1 h exposure, were performed on adult mosquitoes from 75 localities across 28 states. At 30 min of exposure, the proportion of fallen mosquitoes was recorded. After 60 min of exposure, mosquitoes were recovered in non‐treated containers and mortality was determined at 24 h after the set‐up of the experiment. In general, the carbamate insecticides represented the most effective group in terms of the proportion of mosquitoes fallen at 30 min (72–100%) and 24‐h mortality (97–100%). High and widespread resistance to pyrethroids Types I and II and, to a lesser extent, to organophosphates was observed. Insecticide susceptibility among and within states was highly variable.  相似文献   

16.
Insecticide-treated nets and indoor residual spray programs for malaria control are entirely dependent on pyrethroid insecticides. The ubiquitous exposure of Anopheles mosquitoes to this chemistry has selected for resistance in a number of populations. This threatens the sustainability of our most effective interventions but no operationally practicable way of resolving the problem currently exists. One innovative solution involves the co-application of a powerful chemosterilant (pyriproxyfen or PPF) to bed nets that are usually treated only with pyrethroids. Resistant mosquitoes that are unaffected by the pyrethroid component of a PPF/pyrethroid co-treatment remain vulnerable to PPF. There is a differential impact of PPF on pyrethroid-resistant and susceptible mosquitoes that is modulated by the mosquito’s behavioural response at co-treated surfaces. This imposes a specific fitness cost on pyrethroid-resistant phenotypes and can reverse selection. The concept is demonstrated using a mathematical model.  相似文献   

17.
Genetics of Mosquito Vector Competence   总被引:9,自引:0,他引:9       下载免费PDF全文
Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality.  相似文献   

18.
Genetics of mosquito vector competence.   总被引:9,自引:0,他引:9  
Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality.  相似文献   

19.
Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector–host–parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases''.  相似文献   

20.
蚊虫抗药性分子机理   总被引:5,自引:0,他引:5  
崔峰  乔传令 《昆虫知识》2007,44(5):621-626
蚊虫由于特殊的行为、生理及与人类生活密切相关,从而成为人类许多疾病的媒介,如疟疾、登革热、日本脑炎、丝虫病等,大多由库蚊Culex、伊蚊Aedes或按蚊Anopheles传播。世界上每年大量的化学杀虫剂用于农业和公共卫生,直接或间接给蚊虫带来选择压力而引发抗性。抗性机制基本可以分为两大类:代谢抗性(如非特异性羧酸酯酶,P450单加氧酶,谷胱甘肽S-转移酶的扩增)和靶标抗性(如乙酰胆碱酯酶、GABA受体和电压门控钠离子通道的突变)。文章对这些机理的研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号