首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans (PG) are polyanionic proteins consisting of a core protein substituted with carbohydrate chains, that is, glycosaminoglycans (GAG). The biosynthesis of GAG can be manipulated by simple xylosides carrying hydrophobic aglycons, which can enter the cell and initiate the biosynthesis. While the importance of the aglycon is well investigated, there is far less information on the effect of modifications in the xylose residue. We have developed a new synthetic protocol, based on acetal protection and selective benzylation, for modification of the three hydroxyl groups in xylose. Thus we have synthesized twelve analogs of 2-naphthyl β-d-xylopyranoside (XylNap), where each hydroxyl group has been epimerized or replaced by methoxy, fluoro, or hydrogen. To gain more information about the properties of xylose, conformational studies were made on some of the analogs. It was found that the (4)C(1) conformation is highly predominant, accompanied by a nonnegligible population of the (2)S(0) conformation. However, deoxygenation at C3 results in a large portion of the (1)C(4) conformation. The GAG priming ability and proliferation activity of the twelve analogs, were investigated using a matched pair of human breast fibroblasts and human breast carcinoma cells. None of the analogs initiated the biosynthesis of GAG, but an inhibitory effect on endogenous PG production was observed for analogs fluorinated or deoxygenated at C4. From our data it seems reasonable that all three hydroxyl groups in XylNap are essential for the priming of GAG chains and for selective toxicity for tumor cells.  相似文献   

2.
Xylosides are small molecules that serve as primers of glycosaminoglycan biosynthesis. Xyloside mediated modulation of biological functions depends on the extent of priming activity and fine structures of primed GAG chains. In earlier studies, copper (Cu) catalyzed synthesis of click-xylosides and their priming activity were extensively documented. In the current study, ruthenium (Ru) mediated catalysis was employed to synthesize xylosides with a 1,5-linkage between the xylose and the triazole ring instead of a 1,4-linkage as found in Cu-catalyzed click-xyloside synthesis. Mono- and bis-click-xylosides were synthesized using each catalytic method and their glycosaminoglycan priming activity was assessed in vitro using a cellular system. Ru-catalyzed click-xylosides showed a higher priming activity as measured by incorporation of radioactive sulfate into primed glycosaminoglycan chains. This study demonstrates that altering the linkage of the aglycone to the triazole ring changes the priming activity. Computational modeling provides a molecular rationale for higher priming ability of Ru-mediated click-xylosides. Higher GAG priming activity is attributed to the formation of more stable interactions between the 1,5-linked xylosides and β-1,4-galactosyltransferase 7 (β4GalT7).  相似文献   

3.
《Developmental neurobiology》2017,77(12):1401-1412
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical‐period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside‐mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical‐period‐dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017  相似文献   

4.
Xylosides are a group of compounds that can induce glycosaminoglycan (GAG) chain synthesis independently of a proteoglycan core protein. We have previously shown that the xyloside 2-(6-hydroxynaphthyl)β-D-xylopyranoside has a tumor-selective growth inhibitory effect both in vitro and in vivo, and that the effect in vitro was correlated to a reduction in histone H3 acetylation. In addition, GAG chains have previously been reported to inhibit histone acetyltransferases (HAT). To investigate if xylosides, or the corresponding xyloside-primed GAG chains, can be used as HAT inhibitors, we have synthesized a series of naphthoxylosides carrying structural motifs similar to the aromatic moieties of the known HAT inhibitors garcinol and curcumin, and studied their biological activities. Here, we show that the disubstituted naphthoxylosides induced GAG chain synthesis, and that the ones with at least one free phenolic group exhibited moderate HAT inhibition in vitro, without affecting histone H3 acetylation in cell culture. The xyloside-primed GAG chains, on the other hand, had no effect on HAT activity, possibly explaining why the effect of the xylosides on histone H3 acetylation was absent in cell culture as the xylosides were recruited for GAG chain synthesis. Further investigations are required to find xylosides that are effective HAT inhibitors or xylosides producing GAG chains with HAT inhibitory effects.  相似文献   

5.
The role of glycosaminoglycans (GAGs) in the branching morphogenesis of embryonic mouse salivary glands was investigated by culturing the glands in the presence of xylose derivatives which stimulate synthesis of the xyloselinked classes of GAGs. Branching morphogenesis is inhibited severely, but reversibly, by 0.5–1.0 mM π-nitrophenyl-β-d-xylopyranoside and the inhibition correlates with a stimulation of incorporation of [3H]glucosamine (1.8-fold) and [35S]sulfate (almost 3-fold) into GAGs. The effect of β-xyloside on accumulation of newly synthesized GAG also occurs in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the production of free GAG chains rather than proteoglycan-associated GAGs is being stimulated. The xyloside effects apparently do not result from general cytotoxicity of the derivatives, since similar concentrations of the α-anomer do not alter salivary branching or GAG synthesis, the rudiments resume morphogenesis when returned to control medium, and the effect on GAG synthesis is stimulatory rather than inhibitory. The study suggests that GAG biosynthesis plays an important role in salivary development, and that xylosides provide useful probes for characterizing the molecular events controlling branching morphogenesis.  相似文献   

6.
A procyanidin dimer xyloside, catechin-(4α  8)-7-O-β-xylopyranosyl-catechin, was isolated from the inner bark of Betula pendula and its structure was determined using 1D and 2D NMR, CD and high-resolution ESIMS. Interestingly, the 7-O-β-xylopyranose unit was found to be present in the lower terminal unit of the dimer. In addition to this procyanidin dimer xyloside, an entire series of oligomeric and polymeric procyanidin xylosides was detected. Their structures were investigated by hydrophilic interaction HPLC–HRESIMS. Procyanidin glycosides are still rarely found in nature.  相似文献   

7.
A xylosylated carborane was synthesized by standard carbohydrate methodology and tested on normal HFL-1 cells as well as transformed T24 cells. The xylosylated carborane initiated glycosaminoglycan (GAG) synthesis in both cell lines and treatment with the carborane gave a pronounced translocation of proteoglycans to the nuclei of T24 cells. However, most of the boron-containing compounds were secreted to the medium. We conclude that xylosides carrying carboranes are not suitable for boron neutron capture therapy (BNCT) for T24 cells. However, the uptake of boron-containing xyloside, the GAG priming capacity, and the nuclear translocation of glypican-1 make this xyloside a candidate for further investigation for selectivity toward other tumor cell lines.  相似文献   

8.
Glycosaminoglycans (GAG) play decisive roles in various cardio-vascular & cancer-associated processes. Changes in the expression of GAG fine structures, attributed to deregulation of their biosynthetic and catabolic enzymes, are hallmarks of vascular dysfunction and tumor progression. The wide spread role of GAG chains in blood clotting, wound healing and tumor biology has led to the development of modified GAG chains, GAG binding peptides and GAG based enzyme inhibitors as therapeutic agents. Xylosides, carrying hydrophobic aglycone, are known to induce GAG biosynthesis in various systems. Given the important roles of GAG chains in vascular and tumor biology, we envision that RGD-conjugated xylosides could be targeted to activated endothelial and cancer cells, which are known to express αvβ3 integrin, and thereby modulate the pathological processes. To accomplish this vision, xylose residue was conjugated to linear and cyclic RGD containing peptides using click chemistry. Our results demonstrate that RGD-conjugated xylosides are able to prime GAG chains in various cell types, and future studies are aimed toward evaluating potential utility of such xylosides in treating myocardial infarction as well as cancer-associated thrombotic complications.  相似文献   

9.
We have previously reported that the heparan sulfate-priming glycoside 2-(6-hydroxynaphthyl)-beta-D-xylopyranoside selectively inhibits growth of transformed or tumor-derived cells. To investigate the specificity of this xyloside various analogs were synthesized and tested in vitro. Selective growth inhibition was dependent on the presence of a free 6-hydroxyl in the aglycon. Because cells deficient in heparan sulfate synthesis were insensitive to the xyloside, we conclude that priming of heparan sulfate synthesis was required for growth inhibition. In growth-inhibited cells, heparan sulfate chains primed by the active xyloside were degraded to products that contained anhydromannose and appeared in the nuclei. Hence the degradation products were generated by nitric oxide-dependent cleavage. Accordingly, nitric oxide depletion reduced nuclear localization of the degradation products and counteracted the growth-inhibitory effect of the xyloside. We propose that 2-(6-hydroxynaphthyl)-beta-D-xylopyranoside entered cells and primed synthesis of heparan sulfate chains that were subsequently degraded by nitric oxide into products that accumulated in the nucleus. In vivo experiments demonstrated that the xyloside administered subcutaneously, perorally, or intraperitoneally was adsorbed and made available to tumor cells located subcutaneously. Treatment with the xyloside reduced the average tumor load by 70-97% in SCID mice. The present xyloside may serve as a lead compound for the development of novel antitumor strategies.  相似文献   

10.
Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.  相似文献   

11.
The synthesis of a novel series of aminoquinazoline derivatives 1ar and their antiproliferative activities against A375 human melanoma cell line were described. Among them, six compounds showed superior antiproliferative activities to Sorafenib as a reference compound. In particular, the representative compound 1q bearing chromen-4-one moiety exhibited excellent antiproliferative activity (IC50 = 0.006 μM) and good selectivity over HS27 fibroblast cell line.  相似文献   

12.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

13.
The synthesis of a novel series of aminoquinoline derivatives 1a–p and their antiproliferative activities against A375 human melanoma cell line were described. Most compounds showed superior antiproliferative activities to Sorafenib as a reference compound. Among them, quinolinyloxymethylphenyl compounds 1k and 1l exhibited potent activities (IC50 = 0.77 and 0.79 μM, respectively) and excellent selectivity against melanoma and fibroblast cell lines.  相似文献   

14.
β-Glucosidases activated by glucose and xylose are uncommon yet intriguing enzymes that may enhance cellulose saccharification efficiency, and are of interest for application in bioethanol production processes. The molecular mechanisms of activation are completely unknown, and the aim of this study was the kinetic and biophysical characterization of the stimulation of a β-glucosidase from Humicola insolens by glucose and xylose. The effects of the monosaccharides were concentration dependent, where in a stimulatory range (0.1–50 mmol L−1), the activity increased up to 2-fold; in a stimulatory-inhibitory range (50–450 mmol L−1 glucose or 50–730 mmol L−1 xylose), the enzyme continued to be stimulated, but the activity was lower than maximal. Above 450 mmol L−1 glucose or 730 mmol L−1 xylose, increasing inhibition occurred. Dynamic light scattering confirmed that the enzyme is monomeric (54 kDa) and kinetic, intrinsic tryptophan fluorescence emission and far ultraviolet circular dichroism analyses indicated that the enzyme possesses a catalytic site (CS) and a modulator binding site (MS). Glucose or xylose binding to the MS induces conformational changes that stimulate the catalytic activity at the CS. Glucose and xylose may compete with the substrate for the CS while the substrate competes with the monosaccharides for binding to the MS. The stimulation of the enzymatic activity by glucose and xylose, which compete for the same sites on the enzyme molecule, is not synergistic. These data reveal allosteric interactions between the MS and the CS in H. insolens β-glucosidase that result in fine modulation of the catalytic activity by the monosaccharides. A kinetic model was developed that accurately described the experimental data for enzyme stimulation by glucose and/or xylose. Understanding the regulatory mechanisms of the enzyme activity, with the aid of kinetic models, may be useful for the application of the enzyme in cellulose hydrolysis processes.  相似文献   

15.
The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure–function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure–function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p = 0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.  相似文献   

16.
Three series of sulfur-containing analogs to the selectively antiproliferative 2-(6-hydroxynaphthyl) beta-D-xylopyranoside were synthesized and their biological properties investigated. A short, general route to hydroxynaphthyl disulfides from dihydroxynaphthalenes was developed to utilize the disulfide bond as a sulfur-selective protecting group to enable the orthogonal protection of hydroxyls and thiols. The results indicate that hydrophobic, uncharged oxygen-sulfur substituted naphthoxylosides are taken up by cells and initiate priming of GAG chains to a greater extent compared to the oxygen analogs. No correlation between priming ability and antiproliferative activity was observed.  相似文献   

17.
Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10?3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10?3 M), whereas their ability to reactivate was increased at lower concentrations (10?4 M and 10?5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10?5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10?4 M. Amongst newly synthesized analogs with heterocyclic linkers (2635 and 4546), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min?1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min?1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE.  相似文献   

18.
The synthesis of a novel series of 1,4-dihydropyrazolo[4,3-d]imidazole phenyl derivatives 1ab, 2av and their antiproliferative activities against A375P and WM3629 human melanoma cell line were described. Most compounds showed competitive antiproliferative activities to sorafenib, the reference standard. Among them, pyrazoloimidazole phenyl urea compounds 2a, 2d, 2g, 2i, 2t exhibited potent activities on WM3629 cell lines (IC50 = 0.56–0.86 μM). Especially, 2t was found to be a potent and selective C-Raf inhibitor, showing a possibility as melanoma therapeutics.  相似文献   

19.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

20.
The concept of “proteoglycans” as discrete molecules surfaced some 40 years ago, out of previously muddled notions of the extracellular matrix. Core proteins were gradually recognized as molecular entities, distinct with regard to location, substitution with glycosaminoglycan (GAG) chains and biological function. This development is surveyed, with brief outline of methodological approaches, biosynthesis, and functional aspects. Special emphasis is given to the impact of genomics on the field. Some outstanding unresolved issues are emphasized, including regulation of GAG biosynthesis and the specificity of GAG-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号