首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ugi reaction has been successfully applied to the synthesis of novel arginase inhibitors. In an effort to decrease conformational flexibility of the previously reported series of 2-amino-6-boronohexanoic acid (ABH) analogs 1, we designed and synthesized a series of compounds, 2, in which a piperidine ring is linked directly to a quaternary amino acid center. Further improvement of in vitro activity was achieved by adding two carbon bridge in the piperidine ring, that is, tropane analogs 11. These improvements in activity are rationalized by X-ray crystallography analysis, which show that the tropane ring nitrogen atom moves into direct contact with Asp202 (arginase II numbering). The synthetic routes described here enabled the design of novel arginase inhibitors with improved potency and markedly different physico-chemical properties compared to ABH. Compound 11c represents the most in vitro active arginase inhibitor reported to date.  相似文献   

2.
Colleluori DM  Ash DE 《Biochemistry》2001,40(31):9356-9362
Arginases catalyze the hydrolysis of L-arginine to yield L-ornithine and urea. Recent studies indicate that arginases, both the type I and type II isozymes, participate in the regulation of nitric oxide production by modulating the availability of arginine for nitric oxide synthase. Due to the reciprocal regulation between arginase and nitric oxide synthase, arginase inhibitors have therapeutic potential in treating nitric oxide-dependent smooth muscle disorders, such as erectile dysfunction. We demonstrate the competitive inhibition of the mitochondrial human type II arginase by N(omega)-hydroxy-L-arginine, the intermediate in the reaction catalyzed by nitric oxide synthase, and its analogue N(omega)-hydroxy-nor-L-arginine, with K(i) values of 1.6 microM and 51 nM at pH 7.5, respectively. We also demonstrate the inhibition of human type II arginase by the boronic acid-based transition-state analogues 2(S)-amino-6-boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (BEC), which are known inhibitors of type I arginase. At pH 7.5, both ABH and BEC are classical, competitive inhibitors of human type II arginase with K(i) values of 0.25 and 0.31 microM, respectively. However, at pH 9.5, ABH and BEC are slow-binding inhibitors of the enzyme with K(i) values of 8.5 and 30 nM, respectively. The findings presented here indicate that the design of arginine analogues with uncharged, tetrahedral functional groups will lead to the development of more potent inhibitors of arginases at physiological pH.  相似文献   

3.
Recent studies have demonstrated that arginase plays important roles in pathologies such as asthma or erectile dysfunctions. We have synthesized new omega-borono-alpha-amino acids that are analogues of the previously known arginase inhibitors S-(2-boronoethyl)-l-cysteine (BEC) and 2-amino-6-boronohexanoic acid (ABH) and evaluated them as inhibitors of purified rat liver arginase (RLA). In addition to the distance between the B(OH)(2) and the alpha-amino acid functions, the position of the sulfur atom in the side chain also appears as a key determinant for the interaction with the active site of RLA. Furthermore, substitution of the alkyl side chain of BEC by methyl groups and conformational restriction of ABH by incorporation of its side chain in a phenyl ring led to inactive compounds. These results suggest that subtle interactions govern the affinity of inhibitors for the active site of RLA.  相似文献   

4.
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.  相似文献   

5.
The crystal structure of the complex between the binuclear manganese metalloenzyme arginase and the boronic acid analog of L-arginine, 2(S)-amino-6-boronohexanoic acid (ABH), has been determined at 1.7 A resolution from a crystal perfectly twinned by hemihedry. ABH binds as the tetrahedral boronate anion, with one hydroxyl oxygen symmetrically bridging the binuclear manganese cluster and a second hydroxyl oxygen coordinating to Mn2+A. This binding mode mimics the transition state of a metal-activated hydroxide mechanism. This transition state structure differs from that occurring in NO biosynthesis, thereby explaining why ABH does not inhibit NO synthase. We also show that arginase activity is present in the penis. Accordingly, the tight binding and specificity of ABH allows us to probe the physiological role of arginase in modulating the NO-dependent smooth muscle relaxation required for erection. Strikingly, ABH causes significant enhancement of nonadrenergic, noncholinergic nerve-mediated relaxation of penile corpus cavernosum smooth muscle, suggesting that arginase inhibition sustains L-arginine concentrations for NO synthase activity. Therefore, human penile arginase is a potential target for therapeutic intervention in the treatment of erectile dysfunction.  相似文献   

6.
Poly(A)-specific ribonuclease (PARN) is the only mammalian exoribonuclease characterized thus far with high specificity for degrading the mRNA poly(A) tail. PARN belongs to the RNase D family of nucleases, a family characterized by the presence of four conserved acidic amino acid residues. Here, we show by site-directed mutagenesis that these residues of human PARN, i.e. Asp(28), Glu(30), Asp(292), and Asp(382), are essential for catalysis but are not required for stabilization of the PARN x RNA substrate complex. We have used iron(II)-induced hydroxyl radical cleavage to map Fe(2+) binding sites in PARN. Two Fe(2+) binding sites were identified, and three of the conserved acidic amino acid residues were important for Fe(2+) binding at these sites. Furthermore, we show that the apparent dissociation constant ((app)K(d)) values for Fe(2+) binding at both sites were affected in PARN polypeptides in which the conserved acidic amino acid residues were substituted to alanine. This suggests that these residues coordinate divalent metal ions. We conclude that the four conserved acidic amino acids are essential residues of the PARN active site and that the active site of PARN functionally and structurally resembles the active site for 3'-exonuclease domain of Escherichia coli DNA polymerase I.  相似文献   

7.
Arginase is a manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to yield l-ornithine and urea. In order to establish a foundation for future neutron diffraction studies that will provide conclusive structural information regarding proton/deuteron positions in enzyme-inhibitor complexes, we have expressed, purified, assayed, and determined the X-ray crystal structure of perdeuterated (i.e., fully deuterated) human arginase I complexed with 2(S)-amino-6-boronohexanoic acid (ABH) at 1.90A resolution. Prior to the neutron diffraction experiment, it is important to establish that perdeuteration does not cause any unanticipated structural or functional changes. Accordingly, we find that perdeuterated human arginase I exhibits catalytic activity essentially identical to that of the unlabeled enzyme. Additionally, the structure of the perdeuterated human arginase I-ABH complex is identical to that of the corresponding complex with the unlabeled enzyme. Therefore, we conclude that crystals of the perdeuterated human arginase I-ABH complex are suitable for neutron crystallographic study.  相似文献   

8.
Nitric oxide (NO) is the principal mediator of penile erection. NO is synthesized by nitric oxide synthase (NOS). It has been well documented that the major causative factor contributing to erectile dysfunction in diabetic patients is the reduction in the amount of NO synthesis in the corpora cavernosa of the penis resulting in alterations of normal penile homeostasis. Arginase is an enzyme that shares a common substrate with NOS, thus arginase may downregulate NO production by competing with NOS for this substrate, l-arginine. The purpose of the present study was to compare arginase gene expression, protein levels, and enzyme activity in diabetic human cavernosal tissue. When compared to normal human cavernosal tissue, diabetic corpus cavernosum from humans with erectile dysfunction had higher levels of arginase II protein, gene expression, and enzyme activity. In contrast, gene expression and protein levels of arginase I were not significantly different in diabetic cavernosal tissue when compared to control tissue. The reduced ability of diabetic tissue to convert l-arginine to l-citrulline via nitric oxide synthase was reversed by the selective inhibition of arginase by 2(S)-amino-6-boronohexanoic acid (ABH). These data suggest that the increased expression of arginase II in diabetic cavernosal tissue may contribute to the erectile dysfunction associated with this common disease process and may play a role in other manifestations of diabetic disease in which nitric oxide production is decreased.  相似文献   

9.
To examine the interaction of human arginase II (EC 3.5.3.1) with substrate and manganese ions, the His120Asn, His145Asn and Asn149Asp mutations were introduced separately. About 53% and 95% of wild-type arginase activity were expressed by fully manganese activated species of the His120Asn and His145Asn variants, respectively. The K(m) for arginine (1.4-1.6 mM) was not altered and the wild-type and mutant enzymes were essentially inactive on agmatine. In contrast, the Asn149Asp mutant expressed almost undetectable activity on arginine, but significant activity on agmatine. The agmatinase activity of Asn149Asp (K(m) = 2.5 +/- 0.2 mM) was markedly resistant to inhibition by arginine. After dialysis against EDTA, the His120Asn variant was totally inactive in the absence of added Mn(2+) and contained < 0.1 Mn(2+).subunit(-1), whereas wild-type and His145Asn enzymes were half active and contained 1.1 +/- 0.1 Mn(2+).subunit(-1) and 1.3 +/- 0.1 Mn(2+).subunit(-1), respectively. Manganese reactivation of metal-free to half active species followed hyperbolic kinetics with K(d) of 1.8 +/- 0.2 x 10(-8) M for the wild-type and His145Asn enzymes and 16.2 +/- 0.5 x 10(-8) m for the His120Asn variant. Upon mutation, the chromatographic behavior, tryptophan fluorescence properties (lambda(max) = 338-339 nm) and sensitivity to thermal inactivation were not altered. The Asn149-->Asp mutation is proposed to generate a conformational change responsible for the altered substrate specificity of arginase II. We also conclude that, in contrast with arginase I, Mn(2+) (A) is the more tightly bound metal ion in arginase II.  相似文献   

10.
Prohormone convertases play important roles in the proteolytic conversion of many protein precursors. The neuroendocrine protein 7B2 and its 31-residue carboxyl-terminal (CT) peptide potently and specifically inhibit prohormone convertase 2 (PC2). We have analyzed the residues contributing to inhibition using N-terminal truncation and alanine scanning. Removal of more than 3 residues from the amino-terminal end of CT1-18 resulted in a more than 190-fold drop in inhibitory activity, showing that most of the residues between 3 and 18 are required for inhibition. In agreement, an Ala scan indicated that only 4 residues could be replaced with Ala without losing mid-nanomolar inhibitory potency; in particular, Gln7, Gln9, and Asp12 could be Ala-substituted to yield peptides with a similar inhibitory potency to the starting peptide. The all-d-retro-inverso, all-l-inverso, and all-d analogues of CT peptide were completely inactive, indicating that amino acid side chains and the CT peptide main chain interact with PC2. CT peptide inhibition could not be competitively blocked by preincubation with truncated CT peptide forms, supporting an absolute requirement for the Lys-Lys pair in initial binding of the CT peptide to the active site.  相似文献   

11.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 microM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

12.
To explore for the existence of an auxiliary hydrophobic binding register remote from the active site of PSMA a series of phenylalkylphosphonamidate derivatives of glutamic acid were synthesized and evaluated for their inhibitory potencies against PSMA. Both the phenyl- and benzylphosphonamidates (1a and 1b) exhibited only modest inhibitory potency against. The phenethyl analog 1c was intermediate in inhibitory potency while inhibitors possessing a longer alkyl tether from the phenyl ring, resulted in markedly improved K(i) values. The greatest inhibitory potency was obtained for the inhibitors in which the phenyl ring was extended furthest from the central phosphorus (1f, n=5 and 1g, n=6). The slightly serrated pattern that emerged as the alkyl tether increased from three to six methylene units suggests that inhibitory potency is not simply correlated to increased hydrophobicity imparted by the phenylalkyl chain, but rather that one or more hydrophobic binding registers may exist remote from the substrate recognition architecture in the active site of PSMA.  相似文献   

13.
Highly probable active site of the sweet protein monellin.   总被引:4,自引:0,他引:4  
The sweet protein monellin consists of two noncovalently associated polypeptide chains, the A chain of 44 amino acid residues and the B chain of 50 residues. Synthetic monellin is 4000 times as sweet as sucrose on a weight basis, and the native conformation is essential for the sweet taste. Knowledge of the active site of monellin will provide important information on the mode of interaction between sweeteners and their receptors. If the replacement of a certain amino acid residue in monellin removes the sweet taste, while the native conformation is retained, it may be concluded that the position replaced is the active site. Our previous replacement studies on Asp residues in the A chain did not remove the sweet taste. The B chain contains two Asp residues at positions 7 and 21, which were replaced by Asn. [AsnB21]Monellin and [AsnB7]monellin were 7000 and 20 times sweeter than sucrose, respectively. The low potency of the [AsnB7]monellin indicates that AspB7 participates in binding with the receptor. AspB7 was then replaced by Abu. [AbuB7]Monellin was devoid of sweetness, and retained the native conformation. AspB7 is located at the surface of the molecule (Ogata et al.). These results suggest that Asp7 in the B chain is the highly probable active site of monellin.  相似文献   

14.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

15.
Macrophages, upon phagocytosing endospores of Bacillus anthracis, up-regulate the expression of the immunological isoform of nitric oxide synthase, NOS 2, concomitant with production of nitric oxide (NO•) from metabolism of l-arginine. We have previously demonstrated that macrophages that secrete NO• kill the bacilli of B. anthracis. To circumvent this microbicidal activity of NO•, B. anthracis has evolved pathways that include the enzyme arginase, which metabolizes l-arginine to ornithine and urea. Compounds that inhibit arginase might, therefore, offer a therapeutic approach to controlling B. anthracis infection. 2(S)-Amino-6-boronohexanoic acid (ABH) has been reported to be an inhibitor of mammalian arginase. In this study, we explore the inhibitory effect of ABH against B. anthracis arginase and its potential for future development, as an effective therapeutic agent against microbial infection. We found that ABH is an inhibitor of bacterial arginase in several different endospore strains of B. anthracis. Further, ABH inhibits neither the phagocytosis of these endospores nor the up-regulation of NOS 2 concomitant with secretion of NO•. These findings set the stage to determine how efficacious ABH will be in promoting NO•-mediating killing of B. anthracis.  相似文献   

16.
Since both increased nitric oxide (NO) synthase (NOS) abundance and diminished NO signaling have been reported in the aging penis, the role of NO in the adaptations of aging remains controversial. Here we tested the hypothesis that arginase, an enzyme that competes with NOS for the substrate l-arginine, contributes to erectile dysfunction with advanced age in the B6/129 mouse strain. Arginase protein abundance, mRNA expression, and enzyme activity were elevated in aged compared with young penile endothelial cells. In addition, endothelial NOS (NOS3) protein abundance was greater in aged versus young penile endothelial cells, whereas NOS activity and cGMP levels were reduced. Calcium-dependent l-arginine-to-l-citrulline conversion and cGMP formation increased significantly in aged mouse penes in the presence of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH). However, there was no effect on l-arginine-to-l-citrulline conversion or cGMP accumulation in the endothelium from young mouse penes. To assess the functional role of arginase in the inhibition of NOS pathway responsiveness in the penis, we evaluated the effects of ABH and an adeno-associated virus encoding an antisense sequence to arginase I (AAVanti-arginase) on erectile function in vivo. ABH and AAVanti-arginase enhanced endothelium-dependent erectile responses in the aged mice without altering endothelium-independent responses. Paralleling our in vitro observations, ABH or AAVanti-arginase did not affect vascular responses in the young mice. Inhibition of the arginase pathway improves endothelial function in the aging penile circulation, suggesting that the arginase pathway may be exploited to improve erectile dysfunction associated with aging.  相似文献   

17.
Giri NC  Sun H  Chen H  Costa M  Maroney MJ 《Biochemistry》2011,50(22):5067-5076
Human ABH2 repairs DNA lesions by using an Fe(II)- and αKG-dependent oxidative demethylation mechanism. The structure of the active site features the facial triad of protein ligands consisting of the side chains of two histidine residues and one aspartate residue that is common to many non-heme Fe(II) oxygenases. X-ray absorption spectroscopy (XAS) of metallated (Fe and Ni) samples of ABH2 was used to investigate the mechanism of ABH2 and its inhibition by Ni(II) ions. The data are consistent with a sequential mechanism that features a five-coordinate metal center in the presence and absence of the α-ketoglutarate cofactor. This aspect is not altered in the Ni(II)-substituted enzyme, and both metals are shown to bind the cofactor. When the substrate is bound to the native Fe(II) complex with α-ketoglutarate bound, a five-coordinate Fe(II) center is retained that features an open coordination position for O(2) binding. However, in the case of the Ni(II)-substituted enzyme, the complex that forms in the presence of the cofactor and substrate is six-coordinate and, therefore, features no open coordination site for oxygen activation at the metal.  相似文献   

18.
Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. The X-ray crystal structure of a fully active, truncated form of human arginase II complexed with a boronic acid transition state analogue inhibitor has been determined at 2.7 A resolution. This structure is consistent with the hydrolysis of l-arginine through a metal-activated hydroxide mechanism. Given that human arginase II appears to play a role in regulating l-arginine bioavailability to NO synthase in human penile corpus cavernosum smooth muscle, the inhibition of human arginase II is a potential new strategy for the treatment of erectile dysfunction [Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S., Harper, S. L., Speicher, D. W., Morris, S. M., Ash, D. E., Traish, A. M., and Christianson, D. W. (2001) Biochemistry 40, 2678-2688]. Since NO synthase is found in human clitoral corpus cavernosum and vagina, we hypothesized that human arginase II is similarly present in these tissues and functions to regulate l-arginine bioavailability to NO synthase. Accordingly, hemodynamic studies conducted with a boronic acid arginase inhibitor in vivo are summarized, suggesting that the extrahepatic arginase plays a role in both male and female sexual arousal. Therefore, arginase II is a potential target for the treatment of male and female sexual arousal disorders.  相似文献   

19.
Proinflammatory cytokine induction of NO synthesis may contribute to the destruction of pancreatic beta cells leading to type 1 diabetes. The NO synthase substrate arginine can also be metabolized to ornithine and urea in a reaction catalyzed by cytosolic (AI) or mitochondrial (AII) isoforms of arginase. Recent evidence suggests that the rate of NO generation is dependent on the relative activities of NO synthase and arginase. The objectives of this study were (i) to identify the arginase isoforms expressed in rat and human islets of Langerhans and a rat beta cell line, RINm5F and (ii) to investigate the competition for arginine between NO synthase and arginase in IL-1β-treated rat islets. Arginase activity was detected in rat islets (fresh tissue, 346 mU/mg protein; cultured, 587 mU/mg), cultured human islets (56 mU/mg), RINm5F cells (376 mU/mg), rat kidney (238 mU/mg), and rat liver (6119 mU/mg). Using Western blots, AI was shown to be the predominant isoform expressed in rat islets and in RINm5F cells while human islets expressed far more AII than AI. Rat islets were cultured in medium containing 1.14, 0.1, and 0.01 mM arginine and treated with IL-1β and the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH). IL-1β-induced NO generation was unaffected by ABH at 1.14 mM arginine, but significantly increased at 0.1 and 0.01 mM arginine. These findings suggest that the level of islet arginase activity can regulate the rate of induced NO generation and this may be relevant to the insulitis process leading to beta cell destruction in type 1 diabetes.  相似文献   

20.
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号