首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
A series of quinazolinone derived Schiff base derivatives 7–36 were synthesized and characterized by analytical and spectroscopic techniques. The synthesized analogues were screened for their in vitro H+/K+-ATPase inhibition. Most of the compounds showed excellent activity, compared to that of omeprazole, a reference drug. In particular, hydroxy and methoxy derivatives 13–24 were the most active compounds possessing a significant increase for different substituents on the benzene ring thus, contributing positively to gastric H+/K+-ATPase inhibition. Preliminary structure-activity relationship revealed that the compounds 13–24 with electron donating moiety (OH, OCH3) were found to be excellent activity and compounds 9–12 and 25–36 with electron withdrawing moiety (Cl, F, NO2 and Br) were found to be least antiulcer agents.  相似文献   

2.
Streblus asper Lour. (Moraceae) is a medicinal plant in Asian countries including India and Thailand, possessing activities of anti-tumor, anti-allergy, anti-parasitic and anti-bacterial. In this paper, characterization, quantitation and similarity evaluation of cardiac glycosides in different parts of S. asper were investigated by HPLC-Q-TOF-MS and chemometric methods. Then, the inhibition of Na+,K+-ATPase activity by the compounds isolated from S. asper was measured. Meanwhile, enzyme kinetics and molecular docking were determined to exhibit the combination modes between cardiac glycosides and Na+,K+-ATPase. As a result, twenty peaks of cardiac glycosides were assigned. Strophanthidin-3-O-α-l-rhamnopyranosyl-(1 → 4)-6-deoxy-β-d-allopyranoside (1), glucostrebloside (2), strebloside (4) and mansonin (8) with a significant activity of inhibiting Na+,K+-ATPase (IC50 7.55–13.60 μM) were chosen for the determination of enzyme kinetics, exhibiting anticompetitive inhibitory characteristics towards Na+,K+-ATPase. Compound 4 could reasonably bind to the active sites of Na+,K+-ATPase, proved by molecular docking. Furthermore, the contents of the major compounds in four different parts of S. asper were extremely different, analyzed by chemometric methods, similarity analysis and principle compounds analysis. All these findings indicated that the contents of major compounds in different parts of S. asper were extremely different with a significant activity of inhibiting Na+,K+-ATPase, providing a reference for determination of effective part and administered dosage. The combination modes between cardiac glycosides and Na+,K+-ATPase were also revealed by enzyme kinetics and molecular docking, which provided a basis for further study of pharmacological activity.  相似文献   

3.
Panaxatriol, a triterpene bearing a steroid-like structure similar to cardiac glycosides, was presumed to share the same bioactivity with cardiac glycosides, and may be a potential Na+, K+-ATPase inhibitor. In this paper, a series of panaxatriol derivatives were synthesized and evaluated for Na+, K+-ATPase inhibitory activities. The results of biological tests showed that more than half of the synthesized derivatives presented increased inhibitory activities compared with panaxatriol. Of these compounds, 13a with a 3, 4-seco skeleton showed the most potent inhibitory activity, which was equal to that of the standard drug digoxin. To understand the binding mode of the most active compound, molecular docking study of 13a with Na+, K+-ATPase was conducted. Therefore, 13a may serve as a new lead compound for the development of novel Na+, K+-ATPase inhibitors.  相似文献   

4.
We report a series of novel metanilamide-based derivatives 3aq bearing the 2-mercapto-4-oxo-4H-quinazolin-3-yl moiety as tail. All compounds were synthesized by means of straightforward condensation procedures and were investigated in vitro for their inhibition potency against the human (h) carbonic anhydrase (CA; EC 4.2.1.1.1) isoforms I, II, IX and XII. Among all compounds tested the 6-iodo 3g and the 7-fluoro 3i derivatives were the most potent inhibitors against the tumor associated CA IX and XII isoform (KIs 1.5 and 2.7 nM respectively for the hCA IX and KIs 0.57 and 1.9 nM respectively for the hCA XII).The kinetic data reported here strongly support compounds of this type for their future development as radiotracers in tumor pathologies which are strictly dependent on the enzymatic activity of the hCA IX and XII isoforms.  相似文献   

5.
Compounds belonging to a carbazole series have been identified as potent fungal plasma membrane proton adenosine triphophatase (H+-ATPase) inhibitors with a broad spectrum of antifungal activity. The carbazole compounds inhibit the adenosine triphosphate (ATP) hydrolysis activity of the essential fungal H+-ATPase, thereby functionally inhibiting the extrusion of protons and extracellular acidification, processes that are responsible for maintaining high plasma membrane potential. The compound class binds to and inhibits the H+-ATPase within minutes, leading to fungal death after 1–3 h of compound exposure in vitro. The tested compounds are not selective for the fungal H+-ATPase, exhibiting an overlap of inhibitory activity with the mammalian protein family of P-type ATPases; the sarco(endo)plasmic reticulum calcium ATPase (Ca2+-ATPase) and the sodium potassium ATPase (Na+,K+-ATPase). The ion transport in the P-type ATPases is energized by the conversion of ATP to adenosine diphosphate (ADP) and phosphate and a general inhibitory mechanism mediated by the carbazole derivative could therefore be blocking of the active site. However, biochemical studies show that increased concentrations of ATP do not change the inhibitory activity of the carbazoles suggesting they act as allosteric inhibitors. Furthermore decreased levels of intracellular ATP would suggest that the compounds inhibit the H+-ATPase indirectly, but Candida albicans cells exposed to potent H+-ATPase-inhibitory carbazoles result in increased levels of intracellular ATP, indicating direct inhibition of H+-ATPase.  相似文献   

6.
Novel N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives were designed, synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR and Mass spectra. The anticancer activities of the newly synthesized compounds were evaluated in vitro against three human cancer cell lines including K562, Colo-205 and MDA-MB 231 by MTT assay. The screening results showed that five compounds (16b, 16d, 16i, 16p and 16q) exhibited potent cytotoxic activities with IC50 values between 20 and 40 μM. Further in vitro studies revealed that inhibition of sirtuins could be the possible mechanism of action of these molecules.  相似文献   

7.
A series of bis-quaternary pyridinium derivatives 3a3i of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (2) have been synthesized. The synthesized pyridinium compounds have an amide group in conjugation to the oxime moiety. These compounds were evaluated in vitro for their reactivation efficacy against organophosphorus (OP) nerve agents (NAs) (sarin and VX) inhibited human erythrocyte ghost acetylcholinesterase (hAChE) and compared with the reactivation efficacy of 2-PAM and obidoxime. The pKa values of the synthesized compounds were found closer to the pKa values of 2- and 4-pyridinium oxime reactivators such as 2-PAM and obidoxime. Some of the compounds have shown better reactivation efficacy than 2-PAM, and obidoxime against sarin and VX inhibited AChE.  相似文献   

8.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

9.
Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6qu); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.  相似文献   

10.
Four novel 4-(1H-imidazo[4,5-f]-1,10-phenanthrolin-2-yl)phenol derivatives 14 have been synthesized, and their G-quadruplex DNA-binding interactions, telomerase inhibition, antiproliferative activity, cell cycle arrest, and apoptotic induction were studied. All compounds show the preferential h-telo, c-myc, and c-kit2 G-quadruplex binding affinity and the G-quadruplex versus duplex selectivity. In the case of the same G-quadruplex target, the compound 1 exhibits better stabilization effect (ΔTm) than the other three compounds and also gives 80.2% inhibition of telomerase activity at 7.5 μM. All compounds can promote selectively the formation of parallel G-quadruplex structure of both c-myc and c-kit2 without addition of any cations. Four compounds display the cytotoxicity activities against HeLa and HepG2 cells by MTT assay with IC50 values of about 10?6 and 10?5 M, respectively, and cause a substantial decrease in the G2/M-phase cell population and a significant increase in the number of apoptotic cells.  相似文献   

11.
A series of (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (9a9m) and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (10a10i) derivatives that incorporate a variety of aromatic substituents in both the indole and N-benzyl moieties have been synthesized. These analogs were evaluated for their radiosensitization activity against the HT-29 cell line. Three analogs, 10a, 10b, and 10c were identified as the most potent radiosensitizing agents.  相似文献   

12.
Synthesis of novel 4(3H)-quinazolinonyl aminopyrimidine derivatives has been achieved via quinazolinonyl enones which in turn were obtained from 2-acyl-4(3H)-quinazolinone. They have been assayed for biofilm inhibition against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative bacteria (Acinetobacter baumannii). The analogues with 2,4,6-trimethoxy phenyl, 4-methylthio phenyl, and 3-bromo phenyl substituents (5h, 5j & 5k) have been shown to inhibit biofilm formation efficiently in MRSA with IC50 values of 20.7–22.4 μM). The analogues 5h and 5j have demonstrated low toxicity in human cells in vitro and can be investigated further as leads.  相似文献   

13.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

14.
Hydrazone compounds were considered as a useful moiety in drug design development. Therefore, these studies were aimed at the synthesis of new dihydrazones and were screened for their in vitro H+/K+-ATPase and anti-inflammatory activities. The results revealed that compounds 9 (22 ± 0.62 µg/mL), 10 (26 ± 0.91 µg/mL), 15 (24 ± 0.44 µg/mL), 16 (28 ± 0.63 µg/mL), 17 (12 ± 0.38 µg/mL), 18 (14 ± 0.47 µg/mL), 19 (26 ± 0.54 µg/mL), 20 (16 ± 0.41 µg/mL), 25 (06 ± 0.68 µg/mL) and 26 (08 ± 0.43 µg/mL) showed excellent H+/K+-ATPase activity and their IC50 value were lower than the standard drug Omerazole (48 ± 0.12 µg/mL). Compounds 5 (28 ± 0.65 µg/mL), 6 (24 ± 0.61 µg/mL), 7 (28 ± 0.64 µg/mL), 8 (26 ± 0.45 µg/mL), 11 (30 ± 0.74 µg/mL), 12 (28 ± 0.40 µg/mL), 13 (32 ± 0.24 µg/mL), 14 (30 ± 0.55 µg/mL) and 21 (08 ± 0.47 µg/mL), 22 (12 ± 0.47 µg/mL), 23 (10 ± 0.51 µg/mL) and 24 (14 ± 0.84 µg/mL) showed better anti-inflammatory activity compared to standard indomethacin (44 ± 0.15 µg/mL). The structure activity relationship (SAR) showed that, electron donating groups (OH, OCH3) favored the H+/K+-ATPase and antioxidants activity, whereas, electron withdrawing groups (F, Cl, Br and NO2) favored the anti-inflammatory activity. Furthermore, molecular docking study was performed to investigate the binding interactions of the most active analogs with the active site of H+/K+-ATPase enzyme. Compounds 25 (G-score = −9.063) and 26 (G-score = −8.977) showed the highest docking G-scores for H+/K+-ATPase inhibition activity.  相似文献   

15.
A series of 1H-pyrrolo[2,3-c]pyridines as acid pump antagonists (APAs) was synthesized and the inhibitory activities against H+/K+ ATPase isolated from hog gastric mucosa were determined. After elaborating on substituents at N1, C5, and C7 position of 1H-pyrrolo[2,3-c]pyridine scaffold, we have observed that compounds 14f and 14g are potent APAs with H+/K+ ATPase IC50 = 28 and 29 nM, respectively.  相似文献   

16.
A new non-cytotoxic [(+)-17β-hydroxystrebloside (1)] and two known cytotoxic [(+)-3′-de-O-methylkamaloside (2) and (+)-strebloside (3)] cardiac glycosides were isolated and identified from the combined flowers, leaves, and twigs of Streblus asper collected in Vietnam, with the absolute configuration of 1 established from analysis of its ECD and NMR spectroscopic data and confirmed by computational ECD calculations. A new 14,21-epoxycardanolide (3a) was synthesized from 3 that was treated with base. A preliminary structure-activity relationship study indicated that the C-14 hydroxy group and the C-17 lactone unit and the established conformation are important for the mediation of the cytotoxicity of 3. Molecular docking profiles showed that the cytotoxic 3 and its non-cytotoxic analogue 1 bind differentially to Na+/K+-ATPase. Compound 3 docks deeply in the Na+/K+-ATPase pocket with a sole pose, and its C-10 formyl and C-5, C-14, and C-4′ hydroxy groups may form hydrogen bonds with the side-chains of Glu111, Glu117, Thr797, and Arg880 of Na+/K+-ATPase, respectively. However, 1 fits the cation binding sites with at least three different poses, which all depotentiate the binding between 1 and Na+/K+-ATPase. Thus, 3 was found to inhibit Na+/K+-ATPase, but 1 did not. In addition, the cytotoxic and Na+/K+-ATPase inhibitory 3 did not affect glucose uptake in human lung cancer cells, against which it showed potent activity, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.  相似文献   

17.
In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50  10 μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45 μg/ml respectively) with good safety index.Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.  相似文献   

18.
We report the synthesis and biological properties of novel analogues of Istaroxime acting as positive inotropic compounds through the inhibition of the Na+,K+-ATPase. We explored the chemical space around the position 6 of the steroidal scaffold by changing the functional groups at that position and maintaining a basic oximic chain in position 3. Some compounds showed inhibitory potencies of the Na+,K+-ATPase higher than Istaroxime and many of the compounds tested in vivo were safer than digoxin, the classic digitalis compound currently used for the treatment of congestive heart failure as inotropic agent. The 3D-QSAR analyses using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods have been successfully applied to a set of 63 androstane derivatives as Na+,K+-ATPase inhibitors. The contour plots provide many useful insights into relationships between structural features and inhibitory potency.  相似文献   

19.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

20.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号