首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure–activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042 μM, 0.053 μM and 0.131 μM whereas 1b (Ki = 1.111 μM), 2b (Ki = 1.174 μM) and 4b (Ki = 1.562 μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were –NO2 functionalized however, –Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.  相似文献   

2.
Four new triterpenoid saponins, clematochinenoside H–K (14), and five known structures (59), were isolated from the roots and rhizomes of Clematis chinensis. Their structures were elucidated on the basis of spectroscopic evidence and hydrolysis products. All isolates were evaluated for inhibitory effects against nitric oxide (NO) production in LPS-induced RAW 246.7 macrophages. Monodesmosidic saponins (13, 5, and 6) with a free carboxylic acid function at C-28 exhibited potent inhibitory activities with IC50 values in the range of 12.9–32.3 μM, where as bisdesmosidic saponin (4, and 7–9) showed modest inhibitory effects with the inhibition ratios (%) from 39.9 to 59.0 at 50 μM. In addition, the hydroxyl group at C-21 showed negative effect on the NO production inhibitory activity.  相似文献   

3.
A series of heterocyclic derivatives including indoles, pyrazines along with oximes and esters were synthesized from lupeol and evaluated for anti-inflammatory activity through inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 and J774A.1 cells. All the synthesized molecules of lupeol were found to be more active in inhibiting NO production with an IC50 of 18.4–48.7 μM in both the cell lines when compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively). The halogen substitution at phenyl ring of indole moiety leads to potent inhibition of NO production with half maximal concentration ranging from 18.4 to 41.7 μM. Furthermore, alkyl (11, 12) and p-bromo/iodo (15, 16) substituted compounds at a concentration of 20 μg/mL exhibited mild inhibition (29–42%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (10–22%) towards interleukin 1-beta (IL-1β) production in both the cell lines. All the derivatives were found to be non-cytotoxic when tested at their IC50 (μM). These findings suggest that the derivatives of lupeol could be a lead to potent inhibitors of NO.  相似文献   

4.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

5.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

6.
3,4-Diphenyl-substituted 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives were synthesized and evaluated for the inhibitory activities on LPS-induced PGE2 production in RAW 264.7 macrophage cells. Both 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione rings as main scaffolds were easily obtained using one of three synthetic methods. Among the compounds investigated, 1H-3-(4-sulfamoylphenyl)-4-phenyl-pyrrole-2,5-dione (6l) showed a strong inhibitory activity (IC50 = 0.61 μM) of PGE2 production.  相似文献   

7.
In our previous study, a series of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives exhibited potent antiproliferative activities and an unique hepatocellular carcinoma (HCC)-specific anticancer activity was also observed. In further anti-inflammatory research, thienopyridine derivative 1a showed potent inhibition of nitric oxide (NO) production. So a series of thienopyridine analogues of 1a were synthesized and evaluated for anti-inflammatory activities. The structure–activity relationships (SARs) revealed that the most potent analogues 1f and 1o were identified as potent inhibitors of NO production with IC50 values of 3.30 and 3.24 μM, respectively. These results suggest that these 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives might potentially constitute a novel class of anti-inflammatory agents, which require further studies.  相似文献   

8.
Two series of novel N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas (1a18a; 1b18b) as potential EGFR and HER-2 kinase inhibitors have been discovered. These compounds displayed good EGFR and HER-2 inhibitory activity and the SARs are also been studied. Especially compound 7b demonstrated significant EGFR and HER-2 inhibitory activity (IC50 = 0.08 μM for EGFR and IC50 = 0.35 μM for HER-2). Docking simulation was performed to position compound 7b into the EGFR active site to determine the probable binding conformation and antiproliferative assay results indicating that these series of urea and thioureas own high antiproliferative activity against MCF-7. Above all, thiourea 7b would be a potential anticancer agent deserves further research.  相似文献   

9.
A new series of pyrazole-hydrazone derivatives 4a-i were designed and synthesized, their chemical structures were confirmed by IR, 1H NMR, 13C NMR, MS spectral data and elemental analysis. IC50 values for all prepared compounds to inhibit COX-1, COX-2 and 5-LOX enzymes were determined in vitro. Compounds 4a (IC50 = 0.67 μM) and 4b (IC50 = 0.58 μM) showed better COX-2 inhibitory activity than celecoxib (IC50 = 0.87 μM) with selectivity index (SI = 8.41, 10.55 in sequent) relative to celecoxib (SI = 8.85). Also, compound 4a and 4b exhibited superior inhibitory activity against 5-LOX (IC50 = 1.92, 2.31 μM) higher than zileuton (IC50 = 2.43 μM). All target pyrazoles were screened for their ability to reduce nitric oxide production in LPS stimulated peritoneal macrophages. Compounds 4a, 4b, 4f and 4i displayed concentration dependent reduction and were screened for in vivo anti-inflammatory activity using carrageenan-induced rat paw edema assay. Compound 4f showed the highest anti-inflammatory activity (% edema inhibition = 15–20%) at all doses when compared to reference drug celecoxib (% edema inhibition = 15.7–17.5%). Docking studies were carried out to investigate the interaction of target compounds with COX-2 enzyme active site.  相似文献   

10.
A series of 23 3′,4′,5′-trimethoxychalcone analogues was synthesized and their inhibitory effects on nitric oxide (NO) production in LPS/IFN-γ-treated macrophages, and tumor cell proliferation has been investigated. 4-Hydroxy-3,3′,4′,5′-tetramethoxychalcone (7), 3,4-dihydroxy-3′,4′,5′-trimethoxychalcone (11), 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (14), and 3,3′,4′,5′-tetramethoxychalcone (15) were the most potent growth inhibitory agents on NO production, with an IC50 value of 0.3, 1.5, 1.3 and 0.3 μM, respectively. The tumor cells proliferation assay results revealed that several compounds exhibited potent inhibition activity against different cancer cell lines. The chalcone 15 was the most potent anti-proliferative compound in the series with IC50 values of 1.8 and 2.2 μM toward liver cancer Hep G2 and colon cancer Colon 205 cell lines, respectively. 2,3,3′,4′,5′-Pentamethoxychalcone (1), 3,3′,4,4′,5,5′-hexamethoxychalcone (3), 2,3′,4,4′,5,5′-hexamethoxychalcone (5), 2-hydroxy-3,3′,4′,5′-tetramethoxychalcone (10), 11 and 14 showed significant anti-proliferation actions in Hep G2 and Colon 205 cells with an IC50 values ranging between 10 and 20 μM. Among the tested agents, compound 7 showed selective NO production inhibition (IC50 = 0.3 μM), while has no effect on tumor cell proliferation (IC50 >100 μM). 3,3′,4,4′,5′-Pentamethoxychalcone (2) showed selective anti-proliferation effect in Hep G2 cells, in addition to its potent NO inhibition, however has no such response in Colon 205 cells. In contrast, 3-formyl-3′,4′,5′-trimethoxychalcone (22) showed moderate growth inhibition in Colon 205 cells, while has no such effect on NO production and Hep G2 cells proliferation. These results provide insight into the correlation between some structural properties of 3′,4′,5′-trimethoxychalcones and their in vitro anti-inflammatory and anti-cancer differentiation activity.  相似文献   

11.
Two series of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives C1C15 and D1D15 have been synthesized and evaluated for their B-Raf inhibitory and anti-proliferation activities. Compound C14 ((3-(4-bromophenyl)-5-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanone) showed the most potent biological activity against B-RafV600E (IC50 = 0.11 μM) and WM266.4 human melanoma cell line (GI50 = 0.58 μM), being comparable with the positive control Erlotinib and more potent than our previous best compound, while D10 ((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)(5-(3-fluorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)methanone) performed the best in the D series (IC50 = 1.70 μM; GI50 = 1.45 μM). The docking simulation was performed to analyze the probable binding models and poses and the QSAR model was built for reasonable design of B-Raf inhibitors in future. The introduction of 2,3-dihydrobenzo[b][1,4]dioxin structure reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

12.
Novel C6-amino substituted purine nucleoside analogues (212) bearing a modified pyranose-like D ring of the 4-azasteroid moiety were efficiently synthesized through nucleophilic substitution at C6 position of the steroidal nucleoside precursors (1a, b) with versatile amines. All the synthesized new compounds were evaluated for their anticancer activity in vitro against Hela, PC-3 and MCF-7 cell lines. Among them, compounds 4b, 7b and 9b exhibited significant cytotoxicity with the IC50 values of 2.99 μM (PC-3), 2.84 μM, (PC-3) and 2.69 μM (Hela), respectively.  相似文献   

13.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

14.
Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM).  相似文献   

15.
We present the synthesis and biological evaluation of a collection of s-triazine derivatives as a novel scaffold of compounds with the capability to inhibit the PGE2 production in LPS-induced RAW 264.7 macrophage cells. A total of 12 derivatives were synthesized and assayed for PGE2 reduction at 10 μM concentration. Two compounds (7b and 7i) exhibiting >90% inhibition of PGE2 production were found to have IC50 values of 5.76 and 5.52 μM, respectively. They were counter screened for inhibition on COX-2 activity in a cell free assay. Specifically, compound 7i (R1 = 4-Bn-Ph, R2 = Cl, R3 = Ph, R5 = CO2Me) was highly active in cells while maintaining little COX-2 inhibition (∼0% at 10 μM). Molecular docking study provides the possibility that compound 7i could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 instead of COX-2 enzyme. Based on this result, our synthetic efforts will focus on intensive structure–activity relationship (SAR) study of s-triazine scaffold to discovery a potential PGE2 synthesis inhibitor.  相似文献   

16.
Herein we report a series of novel chloramphenicol amine derivatives as aminopeptidase N (APN)/CD13 inhibitors. All compounds were synthesized starting from commercially available (1S,2S)-2-amino-1-(4-nitrophenyl) propane-1,3-diol. The preliminary biological screening showed that some compounds exhibited potent inhibitory activity against APN. It should be noted that one compound, 13b (IC50 = 7.1 μM), possess similar APN inhibitory activity compared with Bestatin (IC50 = 3.0 μM).  相似文献   

17.
A number of 1,5-diarylimidazole analogs were synthesized and evaluated their inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin E2 production. Reactions of 1,5-diarylimidazoles with halogenating reagents (NCS, NBS, NIS) afforded halogenated analogs. Among the analogs tested, compounds Ib, IIa, IIb and IIe exhibited significantly improved inhibitory activities against COX-2-mediated PGE2 production from LPS-induced RAW 264.7 cells compared to those of the parent 1,5-diarylimidazoles. Especially, the analogs Ib (IC50 = 0.55 μM) and IIa (IC50 = 0.58 μM) showed best results. Halogenation on the 1,5-diarylimidazole ring enhanced inhibitory activities against COX-2 catalyzed PGE2 production, however, inhibitory activities were significantly varied by position(s) and species of the substituted halogen(s).  相似文献   

18.
Two new rearranged limonoids, harperforatin (1) and harperfolide (2), and a new chromone, harperamone (3), were isolated from fruits and roots of Harrisonia perforata, together with eight known compounds. Their structures were elucidated on the basis of spectroscopic data. Harperfolide (2) exhibited potent anti-inflammatory activity by suppressing nitric oxide (NO) production from activated macrophages with IC50 value of 6.51 μM. Furthermore, its effect is mediated by reduction of iNOS protein expression, attributable to the inhibitory action of LPS-induced NO production.  相似文献   

19.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

20.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号