首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian clocks (oscillators) regulate multiple life functions in insects. The circadian system located in the male reproductive tract of Lepidoptera is one of the best characterized peripheral oscillators in insects. Our previous research on the cotton leafworm, Spodoptera littoralis, demonstrated that this oscillator controls the rhythm of sperm release from the testis and coordinates sperm maturation in the upper vas deferens (UVD). We demonstrated previously that a protein that functions as yolk protein in females is also produced in cyst cells surrounding sperm bundles in the testis, and is released into the UVD. Here, we investigated the temporal expression of the yolk protein 2 (yp2) gene at the mRNA and protein level in the testis of S. littoralis, and inquired whether their expression is regulated by PER-based molecular oscillator. We describe a circadian rhythm of YP2 accumulation in the UVD seminal fluid, where this protein interacts with sperm in a circadian fashion. However, we also demonstrate that yp2 mRNA and YP2 protein levels within cyst cells show only a diurnal rhythm in light/dark (LD) cycles. These rhythms do not persist in constant darkness (DD), suggesting that they are non-circadian. Interestingly, the per gene mRNA and protein levels in cyst cells are rhythmic in LD but not in DD. Nevertheless, per appears to be involved in the diurnal timing of YP2 protein accumulation in cyst cells.  相似文献   

2.
Although circadian rhythms are found in many peripheral tissues in insects, the control mechanism is still to be elucidated. To investigate the central and peripheral relationships in the circadian organization, circadian rhythms outside the optic lobes were examined in the cricket Gryllus bimaculatus by measuring mRNA levels of period (per) and timeless (tim) genes in the brain, terminal abdominal ganglion (TAG), anterior stomach, mid-gut, testis, and Malpighian tubules. Except for Malpighian tubules and testis, the tissues showed a daily rhythmic expression in either both per and tim or tim alone in LD. Under constant darkness, however, the tested tissues exhibited rhythmic expression of per and tim mRNAs, suggesting that they include a circadian oscillator. The amplitude and the levels of the mRNA rhythms varied among those rhythmic tissues. Removal of the optic lobe, the central clock tissue, differentially affected the rhythms: the anterior stomach lost the rhythm of both per and tim; in the mid-gut and TAG, tim expression became arrhythmic but per maintained rhythmic expression; a persistent rhythm with a shifted phase was observed for both per and tim mRNA rhythms in the brain. These data suggest that rhythms outside the optic lobe receive control from the optic lobe to different degrees, and that the oscillatory mechanism may be different from that of Drosophila.  相似文献   

3.
The circadian clock gene period (Gryllus bimaculatus period, Gbper) plays a core role in circadian rhythm generation in adults of the cricket Gryllus bimaculatus. We examined the role of Gbper in nymphal crickets that show a diurnal rhythm rather than the nocturnal rhythm of the adults. As in the adult optic lobes, Gbper mRNA levels in the head of the third instar nymphs showed daily cycling in light-dark cycles with a peak at mid night, and the rhythm persisted in constant darkness. Injection of Gbper double-stranded RNA (dsRNA) into the abdomen of third instar nymphs knocked-down the mRNA levels to 25% of that in control animals. Most Gbper dsRNA injected nymphs lost their circadian locomotor activity rhythm, while those injected with DsRed2 dsRNA as a negative control clearly maintained the rhythm. These results suggest that nymphs and adults share a common endogenous clock mechanism involving the clock gene Gbper.  相似文献   

4.
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.  相似文献   

5.
Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called “clock genes” constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.  相似文献   

6.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

7.
The photoperiodic response is crucial for many insects to adapt to seasonal changes in temperate regions. It was recently shown that the circadian clock genes period (per) and cycle (cyc) are involved in the photoperiodic regulation of reproductive diapause in the bean bug Riptortus pedestris females. Here, we investigated the involvement of per and cyc both in the circadian rhythm of cuticle deposition and in the photoperiodic diapause of R. pedestris males using RNA interference (RNAi). RNAi of per and cyc disrupted the cuticle deposition rhythm and resulted in distinct cuticle layers. RNAi of per induced development of the male reproductive organs even under diapause-inducing short-day conditions, whereas RNAi of cyc suppressed development of the reproductive organs even under diapause-averting long-day conditions. Thus, the present study suggests that the circadian clock operated by per and cyc governs photoperiodism of males as that of females.  相似文献   

8.
The circadian clock in the brain coordinates the phase of peripheral oscillators that regulate tissue-specific physiological outputs. Here we report that circadian variations in the expression and activity of Cu/Zn superoxide dismutase (SOD1; EC 1.15.1.1) are present in liver homogenates from mice. The SOD1 mRNA expression from wild-type (WT) mice peaked at Zeitgeber Time 9 (ZT9; 9 h after lights-on time). While there was no rhythmicity in that from period2 (per2) gene knockout (P2K) mice, the level of SOD1 from per1/per2 double knockout (DKO) mice was significantly elevated at ZT5. The enzyme activity of SOD1 was also rhythmic in the mouse liver. Moreover, the total amount of the SOD1 exhibited a rhythmic oscillation with a peak at ZT9 in the liver from WT mice. We also found that tert-butylhydroperoxide (t-BHP)-induced oxidative damage in both WT and P2K mouse embryonic fibroblast (MEF) cells resulted in the up-regulation of SOD1 levels. Our data suggest that the expression of an important antioxidant enzyme, SOD1, is under circadian clock control and that mice are more susceptible to oxidative stress depending on the time of day.  相似文献   

9.
10.
Daily fluctuation of permethrin-resistance was found in adult mosquito Aedes aegypti, the major vector of dengue viruses in Taiwan. We hypothesized there is a relationship between resistance and the circadian clock. To test our hypothesis we correlated changes in the knock-down time (KT50) response to permethrin with the expression of the pyrethroid-resistant gene CYP9M9 and the clock gene period (per) during a 12:12 h photoperiodic cycle. Rhythmic expression of per peaked at early scotophase of the light-dark cycle and at early subjective night in constant darkness. The values of KT50 and the expression of CYP9M9 also exhibited circadian rhythms in both susceptible and permethrin-resistant mosquito strains, from which we inferred a link to the circadian clock. The KT50 was significantly longer in the light than in the dark phase, and the level of CYP9M9 mRNA was maximal in early scotophase, dropped to a minimum in the midnight and then slowly increased through the photophase. Existence of a clock control over mosquito sensitivity to permethrin was further indicated by reduced expression of CYP9M9 and reduced mosquito resistance to permethrin after temporal silencing of the per gene. These data provide the first evidence on the circadian control of insect resistance to permethrin.  相似文献   

11.
12.
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism’s internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day/night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense.  相似文献   

13.
Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy.  相似文献   

14.
The circadian clocks govern many metabolic and behavioral processes in an organism. In insects, these clocks and their molecular machinery have been found to influence reproduction in many different ways. Reproductive behavior including courtship, copulation and egg deposition, is under strong influence of the daily rhythm. At the molecular level, the individual clock components also have their role in normal progress of oogenesis and spermatogenesis. In this study on the desert locust Schistocerca gregaria, three circadian clock genes were identified and their expression profiles were determined. High expression was predominantly found in reproductive tissues. Similar daily expression profiles were found for period (per) and timeless (tim), while the clock (clk) mRNA level is higher 12 h before the first per and tim peak. A knockdown of either per or tim resulted in a significant decrease in the progeny produced by dsRNA treated females confirming the role of clock genes in reproduction and providing evidence that both PER and TIM are needed in the ovaries for egg development. Since the knockdown of clk is lethal for the desert locust, its function remains yet to be elucidated.  相似文献   

15.
The Drosophila retina has an autonomous peripheral circadian clock in which the expression of the gene encoding heme oxygenase (HO) is under circadian control with the ho mRNA peaking at the beginning of the day and in the middle of the night. The function of HO in the retina is unknown, but we observed that it regulates the circadian clock and protects photoreceptors against DNA damage. The decline in HO level increases and decreases the expression of the canonical clock genes period (per) and Clock (Clk), respectively. The opposite result was observed after increasing HO expression. Among three products of HO activity—carbon monoxide (CO), ferrous ions, and biliverdin—the latter has no effect on per and Clk expressions, but CO exerts the same effect as the increase of ho expression. This suggests that HO action on the clock is mediated by CO, which may affect Clk expression during the day and the level of per expression. While ho expression is not stimulated by nitric oxide (NO), NO has the same effect on the clock as HO, increasing Clk expression and decreasing the expression of per.  相似文献   

16.
17.
18.
19.
Theperiod(per) gene and thetimeless(tim) gene are essential components of the circadian clock inDrosophila melanogaster. Both gene products interact in interdependent feedback loops, producing a self-sustained cellular rhythmin situ. Several oscillating cells are combined to discrete pacemaker centers that control rhythmic behavior. This paper reviews the work on localizing the circadian pacemaker neurons controlling activity and eclosion, leading to questions about how these pacemaker cells are synchronized to the external light–dark cycle, and how they impose periodicity on behavior. The circadian system ofDrosophilais also compared with that of other arthropods.  相似文献   

20.
Though our knowledge of the molecular details of the circadian clock has advanced rapidly, the functional elements of the photoperiodic clock remain largely unknown. As a first step to approach this issue, we report here the sequences and expression patterns of period (per), timeless (tim), cycle (cyc) and cryptochrome (cry) mRNAs in the flesh fly Sarcophaga crassipalpis. Nucleotide and deduced amino acid sequences of the genes in S. crassipalpis show high similarity to homologous genes in other insects that have been investigated. S. crassipalpis TIM has a unique C-terminus that contains a poly Q region. A diel rhythmicity of per and tim mRNA abundance was detected in the adult heads (peak during scotophase), while cry and cyc mRNA abundance remained fairly constant throughout. The abundance of cyc mRNA was quite low when compared to per, tim and cry mRNA. Rearing temperature affected the amount of per and tim mRNAs: abundance of per mRNA increased at 20 °C when compared to 25 °C, but that of tim mRNA decreased. Photoperiod influenced the expression patterns of per and tim mRNA: the peak of per mRNA expression shifted in concert with onset of the scotophase, while a shift in tim mRNA expression was less pronounced. The amplitude of tim mRNA was severely dampened under long daylength, but that of per mRNA was not affected. These distinct patterns of expression suggest that this information could be used to determine photoperiodic responses such as diapause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号