首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The synthesis and evaluation of a series of 2,4-diaminopyridine-based neuropeptide Y Y1 (NPY Y1) receptor antagonists are described. Compound 1 was previously reported by our laboratory to be a potent and selective Y1 antagonist; however, 1 was also found to have potent hERG inhibitory activity. The main focus of this communication is structure–activity relationship development aimed at eliminating the hERG activity of 1. This resulted in the identification of compound 3d as a potent and selective NPY Y1 antagonist with reduced hERG liability.  相似文献   

2.
A series of trans-3-oxospiro[(aza)isobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide derivatives were synthesized and profiled for NPY Y5 binding affinity, brain and CSF penetrability in rats, and susceptibility to human and mouse P-glycoprotein transporters in order to develop a PET ligand. Compound 12b exhibited an acceptable profile for a PET ligand, and [11C]12b was successfully utilized in clinical settings as a Y5 PET ligand.  相似文献   

3.
Invasive fungal infections are one of the leading causes of nosocomial bloodstream infections with a limited treatment option. A series of derivatized spirooxindolo-pyrrolidine tethered indole and imidazole heterocyclic hybrids have been synthesized, and their antifungal activity against fungal strains were determined. Here we characterize the antifungal activity of a specific spirooxindolo-pyrrolidine hybrid, dubbed compound 9c, a spirooxindolo-pyrrolidine tethered imidazole synthesized with a 2-chloro and trifluoromethoxy substituent. The compound 9c exhibited no cytotoxicity against mammalian cell line at concentrations that inhibited fungal strains. Compound 9c also significantly inhibited the fungal hyphae and biofilm formation. Our results indicate that spirooxindolo-pyrrolidine heterocyclic hybrids potentially represent a broad class of chemical agents with promising antifungal potential.  相似文献   

4.
Spiroindoline urea derivatives, designed to act as NPY Y5 receptor antagonists, were synthesized and their structure–activity relationships were investigated. Of these derivatives, compound 3a showed good Y5 binding affinity with favorable pharmacokinetic properties. Compound 3a significantly inhibited bPP Y5 agonist-induced food intake in rats, and suppressed body weight gain in DIO mice.  相似文献   

5.
Aryl pyrazoles are well recognized class of heterocyclic compounds found in several commercially available drugs. Owing to their significance in medicinal chemistry, in this current account we have synthesized a series of suitably substituted aryl pyrazole by employing Suzuki cross-coupling reaction. All compounds were evaluated for inhibition of mushroom tyrosinase enzyme both in vitro and in silico. Compound 3f (IC50 = 1.568 ± 0.01 µM) showed relatively better potential compared to reference kojic acid (IC50 = 16.051 ± 1.27 µM). A comparative docking studies showed that compound 3f have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (−6.90 kcal/mol) as compared to Kojic acid. The 4-methoxy group in compound 3f shows 100% interaction with Cu. Compound 3f displayed hydrogen binding interaction with His61 and His94 at distance of 1.71 and 1.74 Å which might be responsible for higher activity compared to Kojic acid.  相似文献   

6.
A series of new heterocyclic derivatives of ursolic acid 1 were synthesized and evaluated for their antiproliferative activity against AsPC-1 pancreatic cancer cells. Compounds 24–32, with an α,β unsaturated ketone in conjugation with an heterocyclic ring in ring A have improved antiproliferative activities. Compound 32 is the most active compound with an IC50 of 1.9 μM which is sevenfold more active than ursolic acid 1. Compound 32 arrests cell cycle in G1 phase and induces apoptosis in AsPC-1 cells with upregulation of p53, p21waf1 and NOXA protein levels.  相似文献   

7.
A series of analogues of the pyrazole lead 1 were synthesized in which the heterocyclic core was replaced with an imidazole. A number of potent antagonists were identified and structure–activity relationships (SAR) were investigated both with respect to activity at the P2X7 receptor and in vitro metabolic stability. Compound 10 was identified as a potent P2X7 antagonist with reduced in vitro metabolism and high solubility.  相似文献   

8.
In continuation of our study of novel quinolines with anti-inflammatory activity using the Pfitzinger reaction, several new quinoline derivatives were synthesized and tested for their anti-inflammatory and ulcerogenic effect. A docking study on the COX-2 binding pocket was carried out for the target compounds to rationalize the possible selectivity of them against COX-2 enzyme. The most active compounds (5a, 8a and 11a) were found to be superior to celecoxib. Compound 11a demonstrated the highest anti-inflammatory activity as well as the best binding profiles into the COX-2 binding site. Moreover, compounds 9c, 9e, 10a and 11a were devoid of ulcerogenic activity.  相似文献   

9.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

10.
A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 μM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0–10 and 1–10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.  相似文献   

11.
A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0–2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.  相似文献   

12.
We synthesized novel 15–16 nornaltrexone derivatives 9, 11 and 22 to examine the importance of the cavity in the Beckett–Casy model, which was proposed to interact with the 15–16 ethylene moiety in the morphine structure. All the synthesized compounds showed lower affinities for the opioid receptor than did the naltrexone (10). The binding affinities of 14-OH derivatives 11, in which the rotation of the 9–17 bond would be restricted by an intramolecular hydrogen bond, was improved compared to the corresponding 14-H derivatives 9. Compound 22 whose 9–17 bond was strictly fixed by the ethylene bridge hardly bound to the opioid receptor. Compound 26 also showed very weak binding affinity in spite of the existence of the 15–16 ethylene unit. We proposed an important role for the orientation of the lone electron pair on the 17-nitrogen rather than the significance of the cavity in the Beckett–Casy model.  相似文献   

13.
A series of β-aminoacyl containing thiazolidine derivatives was synthesized and evaluated for their ability to inhibit DPP-IV. Several thiazolidine derivatives with an acid moiety were found to be potent DPP-IV inhibitors. Among them, compound 2da is the most active in this series with an IC50 value of 1 nM, and it showed excellent selectivity over DPP-IV related enzymes including DPP-2, DPP-8, and DPP-9. Compound 2da is chemically and metabolically stable, and showed no CYP inhibition, hERG binding or cytotoxicity. Compound 2db, an ester prodrug of 2da, showed good in vivo DPP-IV inhibition after oral administration in rat and dog models.  相似文献   

14.
A series of new peptidomimetics targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was identified based on the potent and selective pentapeptide Plk1 PBD inhibitor PLHSpT. Unnatural amino acid residues were introduced to the newly designed compound and the N-terminal substituent of the peptidomimetic was investigated. The optimized compound 9 inhibited the Plk1 PBD with IC50 of 0.267 μM and showed almost no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Biolayer interferometry studies demonstrated that compound 9 showed potent binding affinity to Plk1 with a Kd value of 0.164 μM, while no Kd were detected against Plk2 and Plk3. Compound 9 showed improved stability in rat plasma compared to PLHSpT. Binding mode analysis was performed and in agreement with the observed experimental results. There are only two natural amino acids remained in the chemical structure of 9. This study may provide new information for further research on Plk1 PBD inhibitors.  相似文献   

15.
Optimization of HTS hit 1 for NPY Y5 receptor binding affinity, CYP450 inhibition, solubility and metabolic stability led to the identification of some orally available oxygen-linker derivatives for in vivo study. Among them, derivative 4i inhibited food intake induced by the NPY Y5 selective agonist, and chronic oral administration of 4i in DIO mice caused a dose-dependent reduction of body weight gain.  相似文献   

16.
A novel series of pyrazolo[1,5-a]pyrimidine derivatives was synthesized and evaluated as NPY Y1R antagonists. High binding affinity and selectivity were achieved with C3 trisubstituted aryl groups and C7 substituted 2-(tetrahydro-2H-pyran-4-ylamino)ethylamine moieties. Efforts to find close analogs with low plasma clearance in the rat and minimal p-glycoprotein efflux in the mouse were unsuccessful. Compound 2f (CP-671906) inhibited NPY-induced increases in blood pressure and food intake after iv and icv administration, respectively, in Sprague-Dawley (SD) rat models. Oral administration of compound 2f resulted in a modest, but statistically significant, reduction in food intake in a Wistar rat model of feeding behavior. Small inhibitions of food intake were also observed in an overnight fasting/refeeding model in SD rats. These data suggest a potential role for Y1R in the regulation of food intake in rodents.  相似文献   

17.
A series of 2,4-diaminopyridine derivatives was synthesized and evaluated as potential candidates for neuropeptide Y (NPY) Y1 receptor positron emission tomography (PET) tracers. Derivatives bearing substitutions allowing reliable access to radiolabeling were designed, focusing on Y1 binding affinity and lipophilicity. The advanced derivatives 2n and 2o were identified as promising PET tracer candidates.  相似文献   

18.
Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F = 78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3 h after a single, 10 mg/kg, subcutaneous dose.  相似文献   

19.
The co-crystal structure of Compound 6b with tubulin was prepared and solved for indicating the binding mode and for further optimization. Based on the co-crystal structures of tubulin with plinabulin and Compound 6b, a total of 27 novel A/B/C-rings plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human lung cancer NCI-H460 cell line. The optimum phenoxy-diketopiperazine-type Compound 6o exhibited high potent cytotoxicity (IC50 = 4.0 nM) through SAR study of three series of derivatives, which was more potent than plinabulin (IC50 = 26.2 nM) and similar to Compound 6b (IC50 = 3.8 nM) against human lung cancer NCI-H460 cell line. Subsequently, the Compound 6o was evaluated against other four human cancer cell lines. Both tubulin polymerization assay and immunofluorescence assay showed that Compound 6o could inhibit microtubule polymerization efficiently. Furthermore, theoretical calculation of the physical properties and molecular docking were elucidated for these plinabulin derivatives. The binding mode of Compound 6o was similar to Compound 6b based on the result of molecular docking. The theoretical calculated LogPo/w and PCaco of Compound 6o were better than Compound 6b, which could enhance its cytostatic activity. Therefore, Compound 6o might be developed as a novel potent anti-microtubule agent.  相似文献   

20.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号