首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A series of benzoxazole compounds containing oxamic acid were synthesized and screened for the PTP1B inhibition. Compound 31d showed best biochemical potency (Ki) of 6.7 μM. Structure–activity relationship were explained with the help of molecular modeling approach.  相似文献   

2.
A series of ten N-(3-(1H-tetrazole-5-yl)phenyl)acetamide derivatives (NM-07 to NM-16) designed from a lead molecule identified previously in our laboratory were synthesized and evaluated for protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Among the synthesized molecules, NM-14, a 5-Cl substituted benzothiazole analogue elicited significant PTP1B inhibition with an IC50 of 1.88 µM against reference standard suramin (IC50 ≥ 10 µM). Furthermore, this molecule also showed good in vivo antidiabetic activity which was comparable to that of standard antidiabetic drugs metformin and glimepiride. Overall, the results of the study clearly reveal that the reported tetrazole derivatives especially NM-14 are valuable prototypes for the development of novel non-carboxylic inhibitors of PTP1B with antidiabetic potential.  相似文献   

3.
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34 ± 0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

4.
Protein tyrosine phosphatase 1B (PTP1B) has been regarded as a target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A–D (14) from the aerial parts of Hypericum longistylum. The structures of 14 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 14 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes.  相似文献   

5.
A small library of 19 compounds was designed based on unique structural features of PTP1b. Utilizing electrospray ionization mass spectrometry (ESI-MS) to provide binding information about complexes of enzyme and small molecule ligands, two classes of lead compounds were discovered.  相似文献   

6.
A series of novel sulfonamides containing a single difluoromethylene-phosphonate group were discovered to be potent inhibitors of protein tyrosine phosphatase 1B. Structure-activity relationships around the scaffold were investigated, leading to the identification of compounds with IC50 or Ki values in the low nanomolar range. These sulfonamide-based inhibitors exhibit 100 and 30 times higher inhibitory activity than the corresponding tertiary amines and carboxamides, respectively.  相似文献   

7.
Benzylidene-2,4-thiazolidinedione derivatives with substitutions on the phenyl ring at the ortho or para positions of the thiazolidinedione (TZD) group were synthesized as PTP1B inhibitors with IC50 values in a low micromolar range. Compound 3e, the lowest, bore an IC50 of 5.0 μM. In vivo efficacy of 3e as an antiobesity and hypoglycemic agent was evaluated in a mouse model system. Significant improvement of glucose tolerance was observed. This compound also significantly suppressed weight gain and significantly improved blood parameters such as TG, total cholesterol and NEFA. Compound 3e was also found to activate peroxisome proliferator-activated receptors (PPARs) indicating multiple mechanisms of action.  相似文献   

8.
A new method was developed to identify nonpeptidic metalloproteinase inhibitors with novel zinc binding groups. Application of this method to matrix metalloproteinase-9 resulted in the identification of aminomethyl benzimidazole analogue 7a with an IC(50)=13 microM.  相似文献   

9.
10.
An integrated molecular design strategy combining pharmacophore recognition and scaffold hopping was exploited to discover novel PTP1B inhibitors based on the known PTP1B inhibitor Ertiprotafib. A composite pharmacophore model was proposed from the interaction mode of Ertiprotafib, and 21 diverse molecules from five distinct structural classes were designed and synthesized accordingly. New compounds with considerable inhibition against PTP1B were identified from each series, and the most active compound 3a showed IC50 value of 1.3 μmol L?1 against human recombinant PTP1B. Docking study indicated that the new inhibitors assumed binding modes similar to that of Ertiprotafib.  相似文献   

11.
The synthesis and SAR study of a novel class of coxsackievirus B3 (CVB3) inhibitors are reported. These compounds could be considered as the 6-chloropurines substituted at position 9 with variously substituted bicyclic scaffolds (bicyclo[2.2.1]heptane/ene—norbornane or norbornene). The synthesis and biological evaluation of 31 target compounds are described. Several of the analogues inhibited CVB3 in the low micromolar range (0.66–2 μM). Minimal or no cytotoxicity was observed.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) functions as major negative regulator of insulin and leptin signaling pathways. In view ofthis, PTP1B is an significant target for drug development against cancer, diabetes and obesity. The aim of the current study is toidentify PTP1B inhibitors by means of virtual screening with docking. 523,366 molecules from ZINC database have been screenedand based on DOCK grid scores and hydrogen bonding interactions five new potential inhibitors were identified. ZINC12502589,ZINC13213457, ZINC25721858, ZINC31392733 and ZINC04096400 were identified as potential lead molecules for inhibition ofPTP1B. The identified molecules were subjected to Lipinski''s rule of five parameters and found that they did not violate any rule.More specific analysis of pharmacological parameters may be scrutinized through a complete ADME/Tox evaluation. Pharmaalgorithm was used to Calculate ADME–Tox profiles for such molecules. In general, all the molecules presented advantages and aswell as disadvantages when compared to each other. No marked difference in health effects and toxicity profiles were observedamong these molecules.  相似文献   

13.
Natural PTP1B inhibitors from Broussonetia papyrifera   总被引:5,自引:0,他引:5  
Two new compounds, 8-(1,1-dimethylallyl)-5'-(3-methylbut-2-enyl)-3',4',5,7-tetrahydroxyflanvonol (1), 3'-(3-methylbut-2-enyl)-3',4',7-trihydroxyflavane (2) and three known compounds 3,3',4',5,7-pentahydroxyflavone (3), uralenol (4), broussochalcone A (5) were isolated from the roots of Broussonetia papyrifera, and their structures determined by spectroscopic methods. Compounds 1, 3, 4 and 5 significantly show the inhibitory activities against the PTP1B enzyme.  相似文献   

14.
We have synthesized and evaluated a series of triaryl sulfonamide-based PTP1B inhibitors in which a difluoro-methylenephosphonate group of a potent lead has been replaced by potential bioisosteric replacements. Several mono- or di-charged compounds (8a, 8b, and 15a) were shown exhibit inhibitory activity in the low micromolar range, demonstrating the feasibility of using this approach in identifying non-phosphonate pTyr mimetics in a small molecular scaffold. These results also provide a useful indication of the relative effectiveness of these pTyr mimetics.  相似文献   

15.
A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50 = 1.18–8.01 μg/mL) and PTP1B (IC50 = 0.85–8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50 = 0.93 μg/mL) and oleanolic acid (IC50 = 0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor.  相似文献   

16.
The structure-based design and synthesis of isothiazolidinone (IZD) inhibitors of PTP1B containing imidazoles and imidazolines and their modification to interact with the B site of PTP1B are described here. The X-ray crystal structures of 3I and 4I complexed with PTP1B were solved and revealed the inhibitors are interacting extensively with the B site of the enzyme.  相似文献   

17.
The following account describes our systematic effort to replace one of the carboxylate groups of our diacid thiophene PTP1B inhibitors. Active hits were validated using enzymatic assays before pursuing efforts to improve the potency. Only when the C2 carboxylic acid was replaced with another ionizable functional group was reversible and competitive inhibition retained. Use of a tetrazole ring or 1,2,5-thiadiazolidine-3-one-1,1-dioxide as a carboxylate mimetic led to the discovery of two unique starting series that showed improved permeability (PAMPA) and potency of the order of 300nM. The SAR from these efforts underscores some of the major challenges in developing small molecule inhibitors for PTP1B.  相似文献   

18.
Bruguiesulfurol (1), a cyclic 4-hydroxy-dithiosulfonate isolated from mangrove plant Bruguiera gymnorrhiza, was concisely synthesized for the first time in four steps, and a series of its synthetic derivatives were evaluated for in vitro inhibitory effects on PTP1B and related PTPs. Some derivatives were found to have improved pharmacological profile compared with hit 1. Among them, 5a showed the potent selectivity towards PTP1B over other PTPs, including TCPTP, and 7j exhibited the strongest PTP1B inhibitory activity with an IC50 value of 4.54 μM.  相似文献   

19.
Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target for therapeutic drug development to treat diabetes and obesity. In screening for inhibitors of PTP1B, we found that aqueous extracts of teas exhibited potent PTP1B inhibitory effects with an IC50 value of 0.4–4 g dry tea leaves per liter of water. Black tea shows the strongest inhibition activities, followed by oolong and then by green tea. Biochemical fractionations demonstrated that the major effective components in tea corresponded to oxidized polyphenolic compounds. This was further verified by the fact that tea catechins became potent inhibitors of PTP1B upon oxidation catalyzed by tyrosinases. When applied to cultured cells, tea extracts induced tyrosine phosphorylation of cellular proteins. Our study suggests that some beneficial effects of tea may be attributed to the inhibition of PTP1B.  相似文献   

20.
Protein tyrosine phosphatase 1B (PTP1B) has recently been identified as a potential target of Norathyriol. Unfortunately, Norathyriol is not a potent PTP1B inhibitor, which somewhat hinders its further application. Based on the fact that no study on the relationship of chemical structure and PTP1B inhibitory activity of Norathyriol has been reported so far, we attempted to perform structural optimization so as to improve the potency for PTP1B. Via structure-based drug design (SBDD), a rational strategy based on the binding mode of Norathyriol to PTP1B, we designed 26 derivatives with substitutions at the four phenolic hydroxyl groups of Norathyriol. By chemical synthesis and in vitro bioassay, we identified seven PTP1B inhibitors that were more potent than Norathyriol, of which XWJ24 showed the highest potency (IC50: 0.6 μM). We also found out that XWJ24 was a competitive inhibitor and showed the 4.5-fold selectivity over its close homolog, TC-PTP. Through molecular docking of XWJ24 against PTP1B, we highlighted the essential role of its hydrogen bond with Asp181 for PTP1B inhibition and identified a potential halogen bond with Asp48 that was not observed for Norathyriol. The current data indicate that our SBDD strategy is effective to discover potent PTP1B-targeted Norathyriol derivatives, and XWJ24 is a promising lead compound for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号