首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacillus thuringiensis subsp. jegathesan produces Cry11Ba crystal protein with high toxicity to mosquito larvae. The Cry11Ba toxicity is dependent on its receptors on mosquito larval midgut epithelial cells. Previously, a cadherin-like protein (AgCad2), aminopeptidase (AgAPN2) and alkaline phosphatase (AgALP1) were reported to be involved in regulation of Cry11Ba toxicity on Anopheles gambiae larvae. Here, the cDNAs encoding α-amylase (AgAmy1) and α-glucosidase (Agm3) were cloned from A. gambiae larva midgut. Both are glycophosphatidylinositol (GPI) anchored proteins on brush border membranes (BBMV). Immunohistochemistry revealed their localization on different regions of the larval midgut. AgAmy1 and Agm3 bound Cry11Ba with high affinity, 37.6 nM and 21.1 nM respectively. Cry11Ba toxicity against A. gambiae larvae was neutralized by both AgAmy1 and Agm3. The results provide evidence that both AgAmy1 and Agm3 function as receptors of Cry11Ba in A. gambiae.  相似文献   

3.
Hua G  Zhang R  Abdullah MA  Adang MJ 《Biochemistry》2008,47(18):5101-5110
A midgut cadherin AgCad1 cDNA was cloned from Anopheles gambiae larvae and analyzed for its possible role as a receptor for the Cry4Ba toxin of Bacillus thuringiensis strain israelensis. The AgCad1 cadherin encodes a putative 1735-residue protein organized into an extracellular region of 11 cadherin repeats (CR) and a membrane-proximal extracellular domain (MPED). AgCad1 mRNA was detected in midgut of larvae by polymerase chain reaction (PCR). The AgCad1 protein was localized, by immunochemistry of sectioned larvae, predominately to the microvilli in posterior midgut. The localization of Cry4Ba binding was determined by the same technique, and toxin bound microvilli in posterior midgut. The AgCad1 protein was present in brush border membrane fractions prepared from larvae, and Cry4Ba toxin bound the same-sized protein on blots of those fractions. The AgCad1 protein was expressed transiently in Drosophila melanogaster Schneider 2 (S2) cells. 125I-Cry4Ba toxin bound AgCad1 from S2 cells in a competitive manner. Cry4Ba bound to beads extracted 200 kDa AgCad1 and a 29 kDa fragment of AgCad1 from S2 cells. A peptide containing the AgCad1 region proximal to the cell (CR11-MPED) was expressed in Escherichia coli. Although Cry4Ba showed limited binding to CR11-MPED, the peptide synergized the toxicity of Cry4Ba to larvae. AgCad1 in the larval brush border is a binding protein for Cry4Ba toxin. On the basis of binding results and CR11-MPED synergism of Cry4Ba toxicity, AgCad1 is probably a Cry4Ba receptor.  相似文献   

4.
Using a Cry11Ba toxin model, predicted loops in domain II were analyzed for their role in receptor binding and toxicity. Peptides corresponding to loops α8, 1 and 3, but not loop 2, competed with toxin binding to Aedes midgut membranes. Mutagenesis data reveal loops α8, 1 and 3 are involved in toxicity. Loops 1 and 3 are of greater significance in toxicity to Aedes and Culex larvae than to Anopheles. Cry11Ba binds the apical membrane of larval caecae and posterior midgut, and binding can be competed by loop 1 but not by loop 2 peptides. Cry11Ba binds the same regions to which anti-cadherin antibody binds, and this antibody competes with Cry11Ba binding suggesting a possible role of cadherin in toxication.  相似文献   

5.
Novel Bacillus thuringiensis subsp. israelensis (Bti) Cry4Ba toxin-binding proteins have been identified in gut brush border membranes of the Aedes (Stegomyia) aegypti mosquito larvae by combining 2-dimensional gel electrophoresis (2DE) and ligand blotting followed by protein identification using mass spectrometry and database searching. Three alkaline phosphatase isoforms and aminopeptidase were identified. Other Cry4Ba binding proteins identified include the putative lipid raft proteins flotillin and prohibitin, V-ATPase B subunit and actin. These identified proteins might play important roles in mediating the toxicity of Cry4Ba due to their location in the gut brush border membrane. Cadherin-type protein was not identified, although previously, we identified a midgut cadherin AgCad1 as a putative Cry4Ba receptor in Anopheles gambiae mosquito larvae [Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47, 5101–5110]. Other identified proteins in this study that might have lesser roles include mitochondrial proteins such as ATP synthase subunits, mitochondrial processing peptidase and porin; which are likely contaminants from mitochondria and are not brush border membrane components. Trypsin-like serine protease was also identified as a protein that binds Cry4Ba. Identification of these toxin-binding proteins will lead to a better understanding of the mode of action of this toxin in mosquito.  相似文献   

6.
Cry11Ba is one of the most toxic proteins to mosquito larvae produced by Bacillus thuringiensis. It binds Aedes aegypti brush border membrane vesicles (BBMV) with high affinity, showing an apparent dissociation constant (K(d)) of 8.2 nM. We previously reported that an anticadherin antibody competes with Cry11Ba binding to BBMV, suggesting a possible role of cadherin as a toxin receptor. Here we provide evidence of specific cadherin repeat regions involved in this interaction. Using cadherin fragments as competitors, a C-terminal fragment which contains cadherin repeat 7 (CR7) to CR11 competed with Cry11Ba binding to BBMV. This binding was also efficiently competed by the CR9, CR10, and CR11 peptide fragments. Moreover, we show CR11 to be an important region of interaction with Cry11Ba toxin. An alkaline phosphatase (AaeALP1) and an aminopeptidase-N (AaeAPN1) also competed with Cry11Ba binding to Ae. aegypti BBMV. Finally, we found that Cry11Ba and Cry4Ba share binding sites. Synthetic peptides corresponding to loops α8, β2-β3 (loop 1), β8-β9, and β10-β11 (loop 3) of Cry4Ba compete with Cry11Ba binding to BBMV, suggesting Cry11Ba and Cry4Ba have common sites involved in binding Ae. aegypti BBMV. The data suggest that three different Ae. aegypti midgut proteins, i.e., cadherin, AaeALP1, and AaeAPN1, are involved in Cry11Ba binding to Ae. aegypti midgut brush border membranes.  相似文献   

7.
Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin.  相似文献   

8.
The Cry11Aa protein produced in Bacillus thuringiensis subsp. israelensis, a bacterial strain used worldwide for the control of Aedes aegypti larvae, binds midgut brush border membrane vesicles (BBMV) with an apparent Kd of 29.8 nM. Previously an aminopeptidase N (APN), named AaeAPN2, was identified as a putative Cry11Aa toxin binding protein by pull-down assays using biotinylated Cry11Aa toxin (Chen et al., 2009. Insect Biochem. Mol. Biol. 39, 688–696). Here we show this protein localizes to the apical membrane of epithelial cells in proximal and distal regions of larval caeca. The AaeAPN2 protein binds Cry11Aa with high affinity, 8.6 nM. The full-length and fragments of AaeAPN2 were cloned and expressed in Escherichia coli. The toxin-binding region was identified and further competitive assays demonstrated that Cry11Aa binding to BBMV was efficiently competed by the full-length AaeAPN2 and the fragments of AaeAPN2b and AaeAPN2e. In bioassays against Ae. aegypti larvae, the presence of full-length and a partial fragment (AaeAPN2b) of AaeAPN2 enhanced Cry11Aa larval mortality. Taken together, we conclude that AaeAPN2 is a binding protein and plays a role in Cry11Aa toxicity.  相似文献   

9.
A peptide from cadherin AgCad1 of Anopheles gambiae larvae was reported as a synergist of Bacillus thuringiensis subsp. israelensis Cry4Ba''s toxicity to the Anopheles mosquito (G. Hua, R. Zhang, M. A. Abdullah, and M. J. Adang, Biochemistry 47:5101-5110, 2008). We report that CR11 to the membrane proximal extracellular domain (MPED) (CR11-MPED) and a longer peptide, CR9 to CR11 (CR9-11), from AgCad1 act as synergists of Cry4Ba''s toxicity to Aedes aegypti larvae, but a Diabrotica virgifera virgifera cadherin-based synergist of Cry3 (Y. Park, M. A. F. Abdullah, M. D. Taylor, K. Rahman, and M. J. Adang, Appl. Environ. Microbiol. 75:3086-3092, 2009) did not affect Cry4Ba''s toxicity. Peptides CR9-11 and CR11-MPED bound Cry4Ba with high affinity (13 nM and 23 nM, respectively) and inhibited Cry4Ba binding to the larval A. aegypti brush border membrane. The longer CR9-11 fragment was more potent than CR11-MPED in enhancing Cry4Ba against A. aegypti.Mosquitoes are vectors of human and animal infectious diseases. Aedes (Stegomyia) aegypti can transmit viruses that cause dengue fever and yellow fever. Mosquitoes have shown a rapid increase in resistance to various chemical insecticides (16). Nonchemical larvicides based on the bacterium Bacillus thuringiensis subsp. israelensis de Barjac are used to control mosquitoes. The specific toxicity of B. thuringiensis subsp. israelensis to Anopheles, Culex, and Aedes spp. is due to the protein components of the parasporal crystal (reviewed in reference 9). The Cry4Ba insecticidal protein is one of at least four types of parasporal crystals expressed in B. thuringiensis subsp. israelensis. The Cry4Ba insecticidal protein is highly toxic to Anopheles and Aedes larvae but not to Culex larvae (2, 6).Synergists of B. thuringiensis subsp. israelensis, another strategy to improve the efficacy of Cry4Ba and B. thuringiensis subsp. israelensis, would lead to the reduced quantity needed to obtain control, lengthen residual activity, and possibly delay the onset of resistance in target insects (7, 8, 10, 21). In the case of mosquitocidal Cry11Aa, synergistic cytolytic toxin functions as an adventitious receptor, inducing prepore formation and subsequent membrane insertion (20). Recently, a new type of synergist based on peptide fragments of host insect cadherins was shown to enhance Cry1A, Cry3, and Cry4Ba toxicities to lepidopteran, coleopteran, and dipteran larvae, respectively (5, 11, 18, 19). A fragment of the Anopheles gambiae larva midgut cadherin AgCad1 was shown to enhance Cry4Ba against A. gambiae (11). Here we show that the C-terminal cadherin repeat (CR) CR11 to the membrane proximal extracellular domain (MPED) (CR11-MPED) of AgCad1 and another fragment (CR9 to CR11 [CR9-11]) also enhance Cry4Ba against another important mosquito species, A. aegypti.The CR9-11 and CR11-MPED regions of AgCad1 were overexpressed in Escherichia coli according to Chen et al. (5) and tested for the ability to enhance Cry4Ba toxicity to A. aegypti larvae. The CR11-MPED plasmid has been described previously (11), and CR9-11 in pET30a was constructed using the same method, with primers 5′-CGA GCA TAT GGG GTC CCC G TT GCC GAA ATT and 5′-CGC TCT CGA GAA ACA C GA ACG TCA CGC GGT TC. To determine the extent that CR9-11 and CR11-MPED could enhance a low dose of Cry4Ba inclusion body form (IBF), we added increasing amounts of CR9-11 and CR11-MPED IBFs to a Cry4Ba IBF concentration predicted to cause about 35% larval mortality. Bioassays were conducted with fourth-instar A. aegypti larvae as previously described (11). Each treatment was replicated four times, each replicate contained 10 larvae, and larval mortality was recorded after 16 h. The enhancement effect reached a plateau at a 1:25 (Cry4Ba/peptide) mass ratio for both AgCad1 fragments (data not shown). To determine the specificity of the cadherin effect, we included the partial cadherin-like protein WCR8 to WCR10 (WCR8-10) from western corn rootworm Diabrotica virgifera virgifera (18), using a Cry4Ba/WCR8-10 mass ratio of 1:100. The control bioassay using the WCR8-10 cadherin fragment from D. virgifera virgifera showed no synergistic effect with Cry4Ba (data not shown).To assess the relative increase in toxicity when cadherin fragments were present, larvae were fed the Cry4Ba IBF alone or with a fixed 1:25 mass ratio of AgCad1 peptide. The calculated 50% lethal concentration (LC50) of the Cry4Ba IBF was 20.34 ng/ml (16.37 to 25.93 ng/ml) (Table (Table1).1). The addition of CR9-11 and CR11-MPED IBFs to Cry4Ba IBF reduced the Cry4Ba LC50s to 3.43 ng/ml (1.66 to 5.80 ng/ml) and 7.35 (5.94 to 9.07 ng/ml), respectively (Table (Table1);1); furthermore, soluble forms (SF) of CR9-11 and CR11-MPED also reduced the Cry4Ba IBF LC50s, to 5.79 ng/ml (4.42 to 6.73 ng/ml) and 9.23 ng/ml (7.53 to 11.33 ng/ml), respectively (Table (Table1).1). The increased synergistic levels of longer cadherin fragments that are involved with toxin binding were also observed with cadherin fragments from Manduca sexta (3). The use of the SF led to a lower level of enhancement than those of the IBFs of the cadherin peptides. This might be explained by the fact that mosquito larvae are filter feeders; thus, more peptides are ingested if they can be filtered by the mosquito (22).

TABLE 1.

Toxicity of Cry4Ba protoxin IBF alone and in combination with A. gambiae cadherin fragments to fourth-instar larvae of A. aegypti
TreatmenteLC50 (95% CL)aSlope ± SEχ2 test resultRelative toxicityb
Cry4Ba (IBF)c20.34 (16.37-25.93)2.03 ± 0.221.87
Cry4Ba (IBF) + CR11-MPED (IBF)7.35 (5.94-9.07)2.05 ± 0.191.802.76
Cry4Ba (IBF) + CR11-MPED (SF)d9.23 (7.53-11.33)2.17 ± 0.211.912.20
Cry4Ba (IBF) + CR9-11 (IBF)3.43 (1.66-5.80)1.83 ± 0.342.185.93
Cry4Ba (IBF) + CR9-11 (SF)5.79 (4.42-6.73)1.96 ± 0.212.463.51
Open in a separate windowaResults are shown as LC50s (with 95% confidence limits [CL]) and are expressed as nanograms of Cry proteins per ml for bioassays. Mortality values were corrected from the background mortality using Abbott''s formula (1). The LC50s for experimental treatments were calculated using the EPA Probit Analysis Program version 1.5 (U.S. Environmental Protection Agency, Cincinnati, OH), and the differences in LC50s are considered significantly different if the confidence limits do not overlap.bRelative toxicity was determined by dividing the LC50 of a Cry4Ba protoxin IBF alone with the LC50 of a Cry4Ba protoxin IBF with each A. gambiae cadherin fragment. Production and purification of Cry4BRA (referred to as Cry4Ba) IBFs have been described previously (2).cCry4Ba, CR11-MPED, and CR9-11 IBFs were prepared from recombinant E. coli and suspended in sterilized deionized water. The specific concentration of the target protein, such as toxin or the cadherin peptide, was determined from a Coomassie blue-stained sodium dodecyl sulfate gel by an image analyzer (Alpha Innotech, San Leandro, CA), using bovine serum albumin as the standard.dCR11-MPED and CR9-11 SF were prepared from recombinant E. coli and suspended in distilled water.eEach treatment was run 280 times. All mass ratios for combination treatment are 1:25.The binding affinity between Cry4Ba and CR9-11, CR11-MPED, or WCR8-10 was determined with microtiter plates and an enzyme-linked immunosorbent assay, as described previously (24). Microtiter plates were coated with 1.0 μg Cry4Ba toxin/well. Biotinylated CR9-11 and CR11-MPED (0.001 nM to 100 nM) were used to determine total binding values. As shown in Fig. Fig.1,1, each biotin-labeled cadherin peptide specifically bound Cry4Ba toxin. Using a one-site saturation model, we calculated Kd (dissociation constant) values for cadherin peptide binding to Cry4Ba toxin, as follows: CR9-11 peptide Kd value of 13.3 ± 2.4 nM, CR11-MPED peptide Kd value of 23.2 ± 3.4 nM, and WCR8-10 Kd value of 30.0 ± 6.6 nM. Results from these assays are evidence of a specific and high-affinity interaction between Cry4Ba and the two AgCad1 fragments. However, the high-affinity binding of Cry4Ba to WCR8-10 was unexpected, since the cadherin fragment did not affect Cry4Ba toxicity.Open in a separate windowFIG. 1.Binding affinity of Cry4Ba to AgCad1 CR9-11, CR11-MPED, and WCR8-10. Ninety-six-well microtiter plates coated with 1 μg of activated Cry4Ba were incubated with increasing concentrations (in nM) of biotinylated CR9-11, CR11-MPED, or WCR8-10. Binding of biotinylated CR9-11, CR11-MPED, or WCR8-10 to Cry4Ba was determined using an enzyme-linked immunosorbent assay-based binding assay. Bound biotinylated cadherin fragments were detected with a streptavidin-horseradish peroxidase conjugate and substrate. Nonspecific binding was determined in the presence of a 1,000-fold excess of unlabeled homologous CR9-11, CR11-MPED, or WCR8-10. Specific binding was determined by subtracting nonspecific binding levels from total binding levels. Each data point is the mean value based on the results from two experiments done in duplicate. Error bars depict standard errors. Binding affinities (Kd) were calculated based on specifically bound biotinylated cadherin peptides with a one-site saturation binding equation using SigmaPlot version 9 (Systat Software, Inc., San Jose, CA).AgCad1 CR peptides reduce Cry4Ba binding to brush border membrane vesicles (BBMV). Using unlabeled cadherin peptides and Cry4Ba toxin as competitors, we performed competition binding experiments using 125I-Cry4Ba and A. aegypti BBMV, as described by Jurat-Fuentes and Adang (13), with slight modifications (24). Samples were used in duplicate, binding experiments were repeated, and the averaged data were used for analysis. Unlabeled Cry4Ba competed against 125I-Cry4Ba binding to BBMV from about 13.5 to 10 pmol toxins bound per μg BBMV (Fig. (Fig.2).2). AgCad1 CR peptides, but not WCR8-10, reduced binding to the same extent and at the same competitor concentrations (in nM) as unlabeled Cry4Ba. Although WCR8-10 binds Cry4Ba with high affinity (Kd = 30 nM), the inability of WCR8-10 to compete against Cry4Ba binding to A. aegypti BBMV suggests that it did not share the same binding sites as the AgCad1 CR peptides. The differences in the binding characteristics of these cadherin fragments could be responsible for the different levels of synergistic effects that were observed.Open in a separate windowFIG. 2.Homologous and heterologous competition binding assays of 125I-Cry4Ba to A. aegypti fourth-instar-larva BBMV by increasing concentrations of unlabeled Cry4Ba, CR9-11, CR11-MPED, or WCR8-10. Bindings are illustrated as pmol amounts of bound labeled proteins per microgram of BBMV. Each data point is a mean value based on the results from two independent experiments using duplicate samples. Standard errors among samples are shown by error bars.How can a cadherin fragment inhibit Cry toxin binding to BBMV yet synergize Cry toxicity to larvae? One explanation is that AgCad1 is not a receptor for Cry4Ba in A. gambiae larvae, as we suggested previously (11), and that its orthologue is not a receptor in A. aegypti. Possibly, AgCad1 is a “null” receptor for Cry4Ba that does not mediate toxicity, and by blocking Cry4Ba binding to cadherin, the toxicity to larvae is increased. The concept of null receptors was proposed to account for Cry1A binding proteins in the midguts of lepidopteran larvae that do not correlate with toxicity (14). Another explanation is that AgCad1 CR peptides bind Cry4Ba, inducing prepore formation and subsequent binding to secondary receptors, similarly to Cry1Ab, which forms a prepore structure that binds aminopeptidase, a secondary receptor in M. sexta (4). Studies show that M. sexta synergist CR12-MPED binds Cry1Ab with high affinity (5) and induces Cry1Ab oligomerization in the presence of midgut proteinases or trypsin (23). Recently, a Helicoverpa armigera cadherin fragment was shown to oligomerize and enhance the toxicity of Cry1Ac (19). The toxin oligomerization step was reported to be necessary for toxicity (12) and was shown to correlate with enhancement activity of toxin-binding cadherin fragments (17). However, the correlation between toxin enhancement and toxin oligomerization was inconsistent, as a toxin-binding cadherin fragment that oligomerizes Cry1Ac was shown to reduce toxicity (15). Further research is necessary to establish the mechanism of AgCad1 CR peptide synergism of Cry4Ba toxicity to A. gambiae (11) and A. aegypti larvae.  相似文献   

10.
11.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

12.
The Cry3Aa and Cry3Bb insecticidal proteins of Bacillus thuringiensis are used in biopesticides and transgenic crops to control larvae of leaf-feeding beetles and rootworms. Cadherins localized in the midgut epithelium are identified as receptors for Cry toxins in lepidopteran and dipteran larvae. Previously, we discovered that a peptide of a toxin-binding cadherin expressed in Escherichia coli functions as a synergist for Cry1A toxicity against lepidopteran larvae and Cry4 toxicity against dipteran larvae. Here we report that the fragment containing the three most C-terminal cadherin repeats (CR) from the cadherin of the western corn rootworm binds toxin and enhances Cry3 toxicity to larvae of naturally susceptible species. The cadherin fragment (CR8 to CR10 [CR8-10]) of western corn rootworm Diabrotica virgifera virgifera was expressed in E. coli as an inclusion body. By an enzyme-linked immunosorbent microplate assay, we demonstrated that the CR8-10 peptide binds α-chymotrypsin-treated Cry3Aa and Cry3Bb toxins at high affinity (11.8 nM and 1.4 nM, respectively). Coleopteran larvae ingesting CR8-10 inclusions had increased susceptibility to Cry3Aa or Cry3Bb toxin. The Cry3 toxin-enhancing effect of CR8-10 was demonstrated for Colorado potato beetle Leptinotarsa decemlineata, southern corn rootworm Diabrotica undecimpunctata howardi, and western corn rootworm. The extent of Cry3 toxin enhancement, which ranged from 3- to 13-fold, may have practical applications for insect control. Cry3-containing biopesticides that include a cadherin fragment could be more efficacious. And Bt corn (i.e., corn treated with B. thuringiensis to make it resistant to pests) coexpressing Cry3Bb and CR8-10 could increase the functional dose level of the insect toxic activity, reducing the overall resistance risk.The Cry3 class of Bacillus thuringiensis Cry proteins is known for toxicity to coleopteran larvae in the family Chrysomelidae. Cry3Aa and Cry3Bb proteins are highly toxic to Colorado potato beetle (CPB) Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), and both were used for the development of Bt crops (crops treated with B. thuringiensis to make them resistant to pests) and Bt biopesticides. Due to the limited efficacy of Cry3-based biopesticides/plants and the success of competing chemical pesticides, these biopesticides have had limited usage and sales (12). Cry3Bb is toxic to corn rootworms (8, 17), and a modified version is expressed in commercialized MON863 corn hybrids (26).Cry3 toxins have a mode of action that is similar to, yet distinct from, the action of lepidopteran-active Cry1 toxins. The Cry3A protoxin (73 kDa) lacks the large C-terminal region of the 130-kDa Cry1 protoxins, which is removed by proteases during activation to toxin. The Cry3A protoxin is activated to a 55-kDa toxin and then further cleaved within the toxin molecule (5, 18). Activated Cry3A toxin binds to brush border membrane vesicles with a Kd (dissociation constant) of ∼37 nM (19) and recognizes a 144-kDa binding protein in brush border membrane vesicles prepared from the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) (2). Recently, Ochoa-Campuzano et al. (20) identified an ADAM metalloprotease as a receptor for Cry3Aa toxin in CPB larvae.Structural differences between Cry3Bb and Cry3Aa toxins must underlie the unique rootworm activities of Cry3Bb toxin. As noted by Galitsky et al. (11), differences in toxin solubility, oligomerization, and binding are reported for these Cry3 toxins. Recently, Cry3Aa was modified to have activity against western corn rootworm (WCRW) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) (27). Those authors introduced a chymotrypsin/cathepsin G cleavage site into domain 1 of Cry3Aa that allowed the processing of the 65-kDa form to a 55-kDa toxin that bound rootworm midgut.Cadherins function as receptors for Cry toxins in lepidopteran and dipteran larvae. A critical Cry1 toxin binding site is localized within the final cadherin repeat (CR), CR12, of cadherins from tobacco hornworm Manduca sexta (Lepidoptera: Sphingidae) and tobacco budworm Heliothis virescens (Lepidoptera: Noctuidae) (14, 28). Unexpectedly, a fragment of B. thuringiensis R1 cadherin, the Cry1A receptor from M. sexta, not only bound toxin but enhanced Cry1A toxicity against lepidopteran larvae (6). If the binding residues within CR12 were removed, the resulting peptide lost the ability to bind toxin and lost its function as a toxin synergist. Recently, we identified a cadherin from mosquito Anopheles gambiae (Diptera: Culicidae) that binds Cry4Ba toxin and probably functions as a receptor. We discovered a similar effect where a fragment of a cadherin from A. gambiae enhanced the toxicity of the mosquitocidal toxin Cry4Ba to mosquito larvae (15). Sayed et al. (22) identified a novel cadherin-like gene in WCRW and proposed this protein as a candidate Bt toxin receptor. The cadherin-like gene is highly expressed in the midgut tissue of larval stages. The encoded protein is conserved in structure relative to that of other insect midgut cadherins.In this study, we hypothesized that a fragment from a beetle cadherin that contains a putative Bt toxin binding region might enhance the insecticidal toxicities of Cry3Aa and Cry3Bb toxins. The region spanning CR8 to CR10 (CR8-10) of the WCRW cadherin (22) was cloned and expressed in E. coli. This cadherin fragment significantly enhanced the toxicities of Cry3Aa and Cry3Bb toxins to CPB and rootworms.  相似文献   

13.
Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.  相似文献   

14.
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for 125I-Cry1Ab binding sites, though the Kcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.  相似文献   

15.
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.  相似文献   

16.
Bt toxins ingested by insect pests can bind to midgut receptors and cause death, although several steps in this process remain unclear. Multiple Bt toxin receptors have been identified in Lepidoptera, including a cadherin-like protein (CaLP), which is central to several models explaining Bt toxins’ mode of action. Mutations in the Plutella xylostella ATP-dependent binding cassette transporter C2 (Px-abcc2), rather than CaLP, are genetically linked with Bt Cry1Ac resistance. Here we expressed Px-abcc2 in Drosophila and performed larval bioassays to determine whether this protein acts as an effective Bt receptor. Cry1Ac had no effect on larvae expressing Px-abcc2 in salivary glands, yet larvae expressing Px-abcc2 in the midgut were highly susceptible to both Cry1Ac protoxin and trypsin activated toxin. Furthermore, the CaLP orthologue has been lost from the Drosophila genome, making this a useful system for investigating the role of CaLP peptides from Manduca sexta (CR12-MPED), which are known to act as Bt synergists in larval feeding assays. Drosophila larvae expressing Px-ABCC2 in the midgut were fed LD50 concentrations of Cry1Ac toxin or protoxin, plus purified CR12-MPED cloned from M. sexta or P. xylostella. The M. sexta CR12-MPED protein acted synergistically with Cry1Ac protoxin and activated toxin significantly more effectively than the P. xylostella peptide. This work demonstrates ABCC2 is the major functional Cry1Ac receptor for P. xylostella and the importance of CaLP proteins in Bt mode of action may vary between different lepidopteran species.  相似文献   

17.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

18.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

19.
The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera. The midgut cadherin in three laboratory populations of T. ni exhibited high variability, although the resistance to Bt toxin Cry1Ac in the T. ni strain is not genetically associated with cadherin gene mutations. A total of 142 single nucleotide polymorphisms (SNPs) were identified in the cadherin cDNAs from the T. ni strains, including 20 missense mutations. In addition, insertion and deletion polymorphisms (indels) were also identified in the cadherin alleles in T. ni. More interestingly, the results from this study reveal that differential splicing of mRNA also occurs in the cadherin gene expression. Therefore, variation of the midgut cadherin in insects may not only be caused by cadherin gene mutations, but could also result from alternative splicing of its mRNA regulated by factors acting in trans. Analysis of cadherin gene alleles in F2, F3 and F4 progenies from the cross between the Cry1Ac resistant and the susceptible strain after consecutive selections with Cry1Ac for three generations showed that selection with Cry1Ac did not result in an increase of frequencies of the cadherin alleles originated from the resistant strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号