首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research was to extract, with a sequential method, HS free from water-soluble phenols (HS-WP) and water-soluble phenols free from humic substances (WP-HS), and to evaluate and to compare the biological effects of these two extracts to humic substances (HS) and water-soluble phenols (WP) traditionally extracted. In each extract we determined the concentration of low molecular weight organic acids, soluble carbohydrates, fatty acids, phenolic acids and total proteins. We tested the biological activity of each soil extract and of the single identified compounds on different plant organs (Pinus laricio callus, Daucus carota cells, and Pinus laricio, Pinus halepensis, Lens culinaris and Cichorium intybus seeds). The results showed that eliminating from HS the WP fraction, and from WP the HS fraction we obtained extracts chemically different from HS as such, and WP as such. HS and HS-WP increased callus and cell growth and also root elongation of the different species used; in contrast, WP and WP-HS had negative effects inhibiting callus and cell growth and seed germination percentage of coniferous, herbaceous and leguminous species. The negative effects can be ascribed to the presence of phenolic acids in the extracts while the positive biological activity can be attributed to the presence of tartaric acid, and fatty acids. In conclusion, this study helps to discriminate the effects of humic substances against phenolic compounds extracted from soils explaining the different and in some way contradictory biological behaviour of these two main fractions of SOM.  相似文献   

2.
Rhizobium trifolii 11B was u.v. irradiated and nine u.v. mutants have been isolated. Among the mutants, only one, R. trifolii 21M11B, produced more (752 mg/100 ml) water-soluble polysaccharide than the parent (704 mg/100 ml). The composition of water-soluble polysaccharide from u.v. mutants differed from that of the parent, R. trifolii 11B, and none of its u.v. mutants produced water-insoluble polysaccharide as detected by the Aniline Blue method. Storage of u.v. mutants for 2 months at 5°C gave four spontaneous variants which acquired the ability to produce water-insoluble polysaccharide. The spontaneous mutants also retained their water-soluble polysaccharide producing ability. The water-soluble polysaccharide produced by these mutants was characterized as curdlan type. The chemistry of water-soluble and water-insoluble polysaccharides was also ascertained.  相似文献   

3.
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate.  相似文献   

4.
DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1–/– cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time.  相似文献   

5.
Radial distribution functions were deduced by Fourier transform analysis of the angular dependences of diffuse X-ray scattering intensities for the following proteins with different hydration degrees: water-soluble α-protein myoglobin, water-soluble (α + β) protein lysozyme, and transmembrane proteins from the photosynthetic reaction centers of purple bacteria Rhodobacter sphaeroides and Blastochlorii (Rhodopseudomonas) viridis. The results of Fourier transform analysis of X-ray scattering intensities give quantitative characteristics of the mechanism underlying the influence of water on the formation of biological macromolecules. On the one hand, water loosens the network of hydrogen bonds, which results in a considerable conformational mobility in the molecules of lysozyme and myoglobin and the reaction centers. On the other hand, water stabilizes and orders the protein globule. A strict correlation was found between the shift of the “first” maximum of the radial distribution function, loosening of the intraglobular hydrogen bonds, increase in the intramolecular mobility, and appearance of pronounced functional activity in macromolecules. The pattern of behavior of the first maximum in the transmembrane proteins of the reaction center was similar to that observed for the water-soluble proteins. However, the first maximum reached the limiting value of 2.9 Å at a considerably lower hydration degree compared with the water-soluble proteins. A quick transition of the protein complex of the reaction center to its native state is due to the fact that the dehydrated conformation of this complex is very close to the native conformation. Comparison of the radial distribution function for water, water-soluble proteins, and transmembrane proteins suggests a quantitative conclusion that water is the least densely packed and ordered system, the water-soluble proteins are more densely packed than water, and the transmembrane proteins are the most densely packed and ordered system.  相似文献   

6.
The fucose-containing polysaccharides of the brown alga Dictyota dichotoma were extracted with either trichloroacetic acid or HCl to give both water-soluble and water-insoluble materials. The latter had a high proportion (16 to 11%) of protein, and although all the sugars found in the water-soluble extracts were present, the major sugar in these water-insoluble polysaccharides was glucose. The water-soluble material extracted with HCl was a protein-free sulphated heteropolysaccharide. Complete removal of a glucan from the water-soluble extract was achieved by fractional precipitation with ethanol. The recovered glucan-free sulphated polysaccharide, which was rich in glucuronic acid, galactose, fucose and sulphate, showed high anticoagulating activity.  相似文献   

7.
Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.KEY WORDS: controlled release, drug combination, drug delivery, drug solubilization, polymeric micelles  相似文献   

8.
The accumulation of cadmium, zinc and copper by the marine gastropod molluscs Patella vulgata and Patella intermedia has been studied by gel permeation chromatography of water-soluble extracts of environmentally contaminated shellfish.A major proportion of the water-soluble cadmium and copper in these molluscs is associated with a protein of molecular weight 10 800 daltons. Evidence is presented supporting the similarity of this protein with mammalian metallothionein. This protein contained only a small proportion of the zinc found in the samples.  相似文献   

9.
The water-soluble (dextran S) and less water-soluble (dextran L) dextrans elaborated by Leuconostoc mesenteroides NRRL B-1299 contain α-d-glucopyranose residues linked through positions 1 and 6, 1 and 3, as well as 1, 2, and 6. The approximate number of terminal non-reducing d-glucose residues and those linked through positions 1 and 6, 1 and 3, as well as 1, 2, and 6 in the average repeating-unit of dextran S are 5, 4, 1, and 5. The corresponding figures for dextran L are 5, 4, 3, and 5.  相似文献   

10.
Extraction with hydrochloric acid (pH 2.5) of the brown alga Padina tetrastromatica afforded water-soluble and water-insoluble polysaccharides. The water-soluble polysaccharide was fractionated using cetyltritmethyl ammonium bromide and chromatography on DEAE-cellulose and Sephadex G-100. A neutral laminaran like glucan and two new sulphated heteropolysaccharides comprising d-glucuronic acid, l-fucose, l-rhamnose, d-xylose, d-arabinose, d-galactose, d-glucose and half-ester sulphate were obtained. The alginic acid isolated from this brown seaweed was found to be predominantly of poly 1 → 4β-d-mannuronic acid type. The water-soluble sulphated polymer showed high anticoagulant activity.  相似文献   

11.
It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible.  相似文献   

12.
G-protein-coupled receptors (GPCRs) play essential roles in various physiological processes, and are widely targeted by pharmaceutical drugs. Despite their importance, studying GPCRs has been problematic due to difficulties in isolating large quantities of these membrane proteins in forms that retain their ligand binding capabilities. Creating water-soluble variants of GPCRs by mutating the exterior, transmembrane residues provides a potential method to overcome these difficulties. Here we present the first study involving the computational design, expression and characterization of water-soluble variant of a human GPCR, the human mu opioid receptor (MUR), which is involved in pain and addiction. An atomistic structure of the transmembrane domain was built using comparative (homology) modeling and known GPCR structures. This structure was highly similar to the subsequently determined structure of the murine receptor and was used to computationally design 53 mutations of exterior residues in the transmembrane region, yielding a variant intended to be soluble in aqueous media. The designed variant expressed in high yield in Escherichia coli and was water soluble. The variant shared structural and functionally related features with the native human MUR, including helical secondary structure and comparable affinity for the antagonist naltrexone (K d  = 65 nM). The roles of cholesterol and disulfide bonds on the stability of the receptor variant were also investigated. This study exemplifies the potential of the computational approach to produce water-soluble variants of GPCRs amenable for structural and functionally related characterization in aqueous solution.  相似文献   

13.
N-Aryl-N′-hydroxyguanidines are compounds that display interesting pharmacological properties but their chemical reactivity remains poorly investigated. Some of these compounds are substrates for the heme-containing enzymes nitric-oxide synthases (NOS) and act as reducing co-substrates for the copper-containing enzyme Dopamine β-Hydroxylase (DBH) [P. Slama, J.L. Boucher, M. Réglier, Biochem. Biophys. Res. Commun. 316 (2004) 1081-1087]. DBH catalyses the hydroxylation of the important neurotransmitter dopamine into norepinephrine in the presence of both molecular oxygen and a reducing co-substrate. Although many molecules have been used as co-substrates for DBH, their interaction at the active site of DBH and their role in mechanism are not clearly characterized. In the present paper, we have used a water-soluble copper-N3S complex that mimics the CuB site of DBH, and aromatic N-hydroxyguanidines as reducers to address this question. N-Aryl-N′-hydroxyguanidines readily reduced copper(II) to Cu(I) and were oxidized into a nitrosoamidine as previously observed in reactions performed with purified DBH. These data describe for the first time the reactivity of N-aryl-N′-hydroxyguanidines with a water-soluble copper(II) complex and help to understand the interaction of co-substrates with copper at the active site of DBH.  相似文献   

14.
Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used to select mutant parasites with altered PSAC activities, suggesting acquired resistance via reduced channel-mediated toxin uptake. Surprisingly, although these toxins have similar structures and charge, we now show that reduced permeability of one does not protect the intracellular parasite from the other. Leupeptin accumulation in the blasticidin S-resistant mutant was relatively preserved, consistent with retained in vitro susceptibility to leupeptin. Subsequent in vitro selection with both toxins generated a double mutant parasite having additional changes in PSAC, implicating an antimalarial resistance mechanism for water-soluble drugs requiring channel-mediated uptake at the erythrocyte membrane. Characterization of these mutants revealed a single conserved channel on each mutant, albeit with distinct gating properties. These findings are consistent with a shared channel that mediates uptake of ions, nutrients and toxins. This channel's gating and selectivity properties can be modified in response to in vitro selective pressure.  相似文献   

15.
The contractility of the thread model prepared from the KCl-soluble proteins of the egg and in vivo factors for the contraction are investigated in Hemicentrotus, Anthocidaris, and Pseudocentrotus eggs. The contractility of the thread model induced by metal ions or cystine changes during development in the characteristic pattern of high at the metaphase and low at the monaster and the interkinetic stages. The change in contractility is paralleled by the change in the —SH content of the protein. The water-soluble fraction of the eggs has activity in causing contraction of the thread model. This activity changes during development in the same way as the contractility itself. The contraction of the thread induced by the water-soluble fractions is accompanied by a decrease in the —SH content of the thread. The activity of the water-soluble fraction in inducing the contraction is proportional to its ability to decrease the number of —SH groups. On boiling, the activity is largely destroyed. The activity is due to two components, one being non-dialyzable and the other dialyzable. Separately each component has little effect, but when mixed, the activity of the original sample is completely restored.  相似文献   

16.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

17.
The starch water-soluble polysaccharides from sugary (su) endosperm of sorghum were isolated and characterized. Starch granule structure and co  相似文献   

18.
Eighteen Pediococcus strains were screened for their potential as silage inoculants. Pediococcus acidilactici G24 was found to be the most suitable, exhibiting a short lag phase on both glucose and fructose, a rapid rate of acid production, a high sugar-to-lactate conversion efficiency, no detectable breakdown of proteins or lactic acid, and the ability to grow within a broad range of pH and temperature. When tested in laboratory silos using grass with a water-soluble carbohydrate content of 24 g/kg of aqueous extract, P. acidilactici G24 stimulated the natural Lactobacillus plantarum population and accelerated the rates of lactic acid production and pH decrease. After 6 days of fermentation, the inoculated silage exhibited a 12% decrease in ammonia nitrogen and an 11% increase in crude protein levels compared with uninoculated controls. The use of an L. plantarum inoculant at a rate of 104 bacteria per g of grass in conjunction with P. acidilactici G24 produced no additional beneficial effect. Inoculation of grass with a water-soluble carbohydrate level of 8 g/kg of aqueous extract with P. acidilactici G24 led to no acceleration in the rate of L. plantarum growth or pH decrease. However, after 7 days of fermentation the inoculated silage had a 14% lower ammonia nitrogen protein content than did uninoculated controls. The results suggest that P. acidilactici G24 may be useful as a silage inoculant for crops with a sufficiently high water-soluble carbohydrate level.  相似文献   

19.
Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7 was expressed in the seeds from 4 days post-anthesis (DPA) to 13 DPA, with the peak of expression at 13 DPA. The seed coat epidermis cells of irx7 displayed no aberrant morphology during differentiation, and these cells synthesized and deposited the same amount of mucilage as did wild type (WT) cells. However, the distribution of the water-soluble vs. adherent mucilage layers was significantly altered in irx7 compared to the WT. Both the amount of xylose and the extent of glycosyl linkages of xylan was dramatically decreased in irx7 water-soluble and adherent mucilage compared to the WT. The polymeric structure of water-soluble mucilage was altered in irx7, with a total loss of the higher molecular weight polymer components present in the WT. Correspondingly, whole-seed immunolabeling assays and dot-immunoassays of extracted mucilage indicated dramatic changes in rhamnogalacturonan I (RG I) and xylan epitopes in irx7 mucilage. Furthermore, the crystalline cellulose content was significantly reduced in irx7 mucilage. Taken together, these results indicate that xylan synthesized by IRX7 plays an essential role in maintaining the adhesive property of seed coat mucilage, and its structural role is potentially implemented through its interaction with cellulose.  相似文献   

20.
New water-soluble conjugates in the form of Schiff bases (DGM-1 and DGM-2) were prepared by the interaction of water-soluble periodate-oxidized galactomannan with doxorubicin or N-(L-lysyl)doxorubicin, respectively. The water-soluble galactomannan (DAVANAT®, a commercial product of Pro-Pharmaceuticals company) was obtained by partial acidic hydrolysis of high-molecular-mass galactomannan from Cyamopsis tetragonoloba (guar gum) seeds. The conjugate stability was studied in aqueous solutions. The DGM-1 anti-proliferative activity was comparable with that of doxorubicin on three models: cell lines of murine melanoma B16-F1 and human breast cancer MCF-7 (HTB-22) and human colon cancer HT-29 (HTB-38). DGM-2 was poorly active in all the three tests. DGM-1 can thus be regarded as a high-molecular-mass depot form of doxorubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号