首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcomas are rare cancers and the current treatments in inoperable or metastatic disease have not been shown to prolong survival. In order to develop novel targeted therapies, we tested the efficacy of polo-like kinase 1 (PLK-1) inhibitor (TAK-960) in sarcoma. All the sarcoma cell lines were sensitive to TAK-960 with IC50s in the low nanomolar range. We chose MPNST, CHP100 and LS141 for our studies and of which MPNST cells exclusively underwent polyploidy after a delay in mitosis for about 18 hours; CHP100 cells, after a 24h mitotic delay, died of apoptosis; LS141, after a delay in mitosis stayed at 4N with mild apoptosis. Apoptosis induced by TAK-960 in CHP100 was associated with down-regulation of Mcl-1 and the effect was recapitulated by down-regulating PLK1 by siRNA, confirming that the effect of TAK-960 on Mcl-1 expression is target specific. With suppression of Mcl-1 by siRNA, TAK-960 induced apoptosis in MPNST cells as well. These effects were confirmed in vivo, such that TAK-960 more effectively inhibited CHP100 than MPNST xenografts. In the setting of PLK-1 inhibition, Mcl-1 down regulation is shown to be an important determinant of apoptosis. Collectively, the net effect of this is to drive cells to apoptosis, resulting in a greater anti-tumor effect in vivo. Therefore, targeting PLK-1 should have a greater impact in treating sarcomas provided there is concomitant suppression of Mcl-1. These results further indicate that Mcl-1 could be an important biomarker to predict sensitivity to the induction of apoptosis by PLK-1 targeted therapy in sarcoma.  相似文献   

2.

Background

Cannabinoid (CB) receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB1 and CB2 receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB1 and CB2 receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO) in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB1 receptor activation to the cerebroprotective effects of TAK-937.

Methodology/Principal Findings

Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h) or vehicle for 24 h after 2 h MCAO. AM251, a selective CB1 receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h) for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937.

Conclusions/Significance

We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB1 receptor activation.  相似文献   

3.
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor for which new therapeutic approaches are urgently required. Unfolded protein response (UPR) plays an important role in the progression of GBM and is a promising target for developing novel therapeutic interventions. We identified ubiquitin-activating enzyme 1 (UBA1) inhibitor TAK-243 that can strongly induce UPR in GBM cells. In this study, we evaluated the functional activity and mechanism of TAK-243 in preclinical models of GBM. TAK-243 significantly inhibited the survival, proliferation, and colony formation of GBM cell lines and primary GBM cells. It also revealed a significant anti-tumor effect on a GBM PDX animal model and prolonged the survival time of tumor-bearing mice. Notably, TAK-243 more effectively inhibited the survival and self-renewal ability of glioblastoma stem cells (GSCs) than GBM cells. Importantly, we found that the expression level of GRP78 is a key factor in determining the sensitivity of differentiated GBM cells or GSCs to TAK-243. Mechanistically, UBA1 inhibition disrupts global protein ubiquitination in GBM cells, thereby inducing ER stress and UPR. UPR activates the PERK/ATF4 and IRE1α/XBP signaling axes. These findings indicate that UBA1 inhibition could be an attractive strategy that may be potentially used in the treatment of patients with GBM, and GRP78 can be used as a molecular marker for personalized treatment by targeting UBA1.Subject terms: CNS cancer, Cancer stem cells  相似文献   

4.
TAK-778, a derivative of ipriflavone, has been shown to induce bone growth in in vitro and in vivo models. However, there are no studies evaluating by which mechanism TAK-778 exerts its effect. Considering the evidences that its precursors act via classical estrogen-receptor (ER)-mediated signaling, in the present study, we tested the hypothesis that TAK-778 induces osteogenesis in human bone marrow cell culture via an ER-dependent pathway. Cells were cultured in 24-well culture plates at a cell density of 2 x 10(4) cells/well in culture medium containing: TAK-778 (10(-5) M), Tamoxifen (10(-5) M), TAK-778 (10(-5) M) + Tamoxifen (10(-5) M), and vehicle. During the culture period, cells were incubated at 37 degrees C in a humidified atmosphere of 5% CO(2) and 95% air. At 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity, and bone-like formation were evaluated. Data were compared by two-way ANOVA and Duncan's multiple range test. TAK-778 did not affect cell viability. Cell number was reduced by TAK-778. Total protein content, ALP activity, and bone-like formation were increased by TAK-778. In general, Tamoxifen did not have any effect on cell behavior. However, when cells were cultured in medium containing both TAK-778 and Tamoxifen, the effect of TAK-778 on osteoblast differentiation was inhibited. The present results show that TAK-778 enhances osteoblast differentiation in human bone marrow cell culture, at least in part, via an ER-dependent pathway, since its effect was inhibited by Tamoxifen, a well-known estrogen receptor antagonist.  相似文献   

5.
c-Jun NH(2)-terminal kinase (JNK), a member of the MAPK family of protein kinases, is a stress-response kinase that is activated by proinflammatory cytokines and growth factors coupled to membrane receptors or through nonreceptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibitors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We recently demonstrated that the activation of JNK by this condition is initiated by ROI generated by mitochondrial electron transport and involves sequential activation of the proline-rich kinase 2 and the small GTP-binding factors Rac-1 and Cdc42. Here we present evidence that protein kinase C (PKC) and transforming growth factor-beta-activated kinase-1 (TAK-1) are also components of this pathway. Inhibition of PKC with the broad-range inhibitor calphostin C, the PKC-alpha/beta-selective inhibitor Go9367, or adenovirus-expressing dominant-negative PKC-alpha blocked the phosphorylation of proline-rich kinase 2 and JNK. Reoxygenation activated the mitogen-activated protein kinase kinase kinase, TAK-1, and promoted the formation of a complex containing Rac-1, TAK-1, and JNK but not apoptosis-stimulating kinase-1 or p21-activated kinase-1, which was detected within the first 10 min of reoxygenation. These results identify two new components, PKC and TAK-1, that have not been previously described in this signaling pathway.  相似文献   

6.
TAK-778 has been shown to induce bone growth in in vitro and in vivo models. However, there are no studies evaluating the effect of TAK-778 on human cells. Thus, the aim of this study was to investigate osteogenesis induced by TAK-778 on human bone marrow cells. Cells were cultured in 24-well culture plates at a cell density of 2 x 10(4) cells/well in culture medium containing TAK-778 (10(-7), 10(-6), and 10(-5) M, each) or vehicle. During the culture period, cells were incubated at 37 degrees C in a humidified atmosphere of 5% CO(2) and 95% air. For attachment evaluation, cells were cultured for 4 and 24 h. After 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity, and bone-like formation were evaluated. Data were compared by ANOVA and Duncan's multiple range test. TAK-778 did not affect cell attachment and viability. Cell number was reduced by TAK-778 in all time period evaluated in a dose-dependent way. The effect of TAK-778 on total protein content, ALP activity and bone-like formation was a dose-dependent increase. The present results suggest that initial cell events such as cell attachment are not affected by TAK-778 while events that indicate osteoblast differentiation including reduced cell proliferation, and increased both ALP activity and bone-like formation are enhanced by TAK-778 in a time and dose-dependent way. It means that TAK-778 could be a useful drug to enhance new bone formation in clinical situations that require rapid restoration of physiologic function, such as orthopedic and maxillofacial surgery.  相似文献   

7.
Inhibition of tumor angiogenesis leads to a lack of oxygen and nutrients in the tumor and therefore has become a standards of care for many solid tumor therapies. Dual inhibition of vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) protein kinase activities is a popular strategy for targeting tumor angiogenesis. We discovered that TAK-593, a novel imidazo[1,2-b]pyridazine derivative, potently inhibits tyrosine kinases from the VEGFR and PDGFR families. TAK-593 was highly selective for these families, with an IC(50) >1 μM when tested against more than 200 protein and lipid kinases. TAK-593 displayed competitive inhibition versus ATP. In addition, TAK-593 inhibited VEGFR2 and PDGFRβ in a time-dependent manner, classifying it as a type II kinase inhibitor. Analysis of enzyme-inhibitor preincubation experiments revealed that the binding of TAK-593 to VEGFR2 and PDGFRβ occurs via a two-step slow binding mechanism. Dissociation of TAK-593 from VEGFR2 was extremely slow (t(1/2) >17 h), and the affinity of TAK-593 at equilibrium (K(i)*) was less than 25 pM. Ligand displacement analysis with a fluorescent tracer confirmed the slow dissociation of TAK-593. The dissociation rate constants were in good agreement between the activity and ligand displacement data, and both analyses supported slow dissociation of TAK-593. The long residence time of TAK-593 may achieve an extended pharmacodynamic effect on VEGFR2 and PDGFRβ kinases in vivo that differs substantially from its observed pharmacokinetic profile.  相似文献   

8.
TAK-778 has been shown to stimulate osteogenesis both in vitro and in vivo. However, the mechanism by which TAK-778 exerts its effects is still unclear. There is evidence that TAK-778 acts via estrogen-receptor (ER)-mediated signaling; this study therefore aimed to investigate the roles that ERα, ERβ, and membrane ER play in the osteogenic effect of TAK-778. To this end, human bone marrow mesenchymal cells were cultured with TAK-778 in the presence of either ICI182,780 (ERα and ERβ antagonist) or MPP (ERα antagonist) or PD98059 (an extracellular-regulated kinase inhibitor that acts on the membrane ER pathway). The following parameters were evaluated: cell proliferation, collagen content, alkaline phosphatase (ALP) activity and bone-like formation. Data were compared using ANOVA. The effect of TAK-778 on expression of ERα and ERβ was investigated by immunolabeling. In order to investigate whether TAK-778 binds to ER, an ER binding assay was performed. Both immunolabeling and binding assays were conducted using cells from human alveolar bone. The osteogenic effect of TAK-778 was inhibited by ICI182,780 and MPP; however, it was not affected by PD98059. The expression of both ERα and ERβ was not affected by TAK-778. The competition curve obtained from the binding assay using TAK-778 showed maximal displacement when 10−5 M TAK-778 was used. This study's results show that TAK-778 enhances osteoblast differentiation through an ERα-dependent pathway by binding to this receptor and not by increasing the expression of ER. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

9.
《Translational oncology》2020,13(11):100834
The Unfolded Protein Response (UPR) plays a key role in the adaptive response to loss of protein homeostasis within the endoplasmic reticulum (ER). The UPR has an adaptive function in protein homeostasis, however, sustained activation of the UPR due to hypoxia, nutrient deprivation, and increased demand for protein synthesis, alters the UPR program such that additional perturbation of ER homeostasis activates a pro-apoptotic program. Since ubiquitination followed by proteasomal degradation of misfolded proteins within the ER is a central mechanism for restoration of ER homeostasis, inhibitors of this pathway have proven to be valuable anti-cancer therapeutics. Ubiquitin activating enzyme 1(UAE1), activates ubiquitin for transfer to target proteins for proteasomal degradation in conjunction with E2 and E3 enzymes. Inhibition of UAE1 activity in response to TAK-243, leads to an accumulation of misfolded proteins within the ER, thereby aggravating ER stress, leading to DNA damage and arrest of cells in the G2/M phase of the cell cycle. Persistent drug treatment mediates a robust induction of apoptosis following a transient cell cycle arrest. These biological effects of TAK-243 were recapitulated in mouse models of PDAC demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity. In vitro as well as studies in mouse models failed to show enhanced efficacy when TAK-243 was combined with ionizing radiation or gemcitabine, providing an impetus for future studies to identify agents that synergize with this class of agents for improved tumor control in PDAC.SignificanceThe UAE1 inhibitor TAK-243, mediates activation of the unfolded protein response, accumulation of DNA breaks and apoptosis, providing a rationale for the use as a safe and efficacious anti-cancer therapeutic for PDAC.  相似文献   

10.
TAK-778, a novel synthetic 3-benzothiepin derivative, stimulates the formation of cartilaginous nodules in mouse chondroprogenitor-like ATDC5 cells in vitro in association with upregulation of the gene expression of transforming growth factor-beta(2), but not bone morphogenetic protein-4 and insulin-like growth factor-I. One-shot injection of the TAK-778-containing sustained-release microcapsules accelerated the repair process of the full thickness defects of articular cartilage in rabbit knees. Our in vitro and in vivo results indicate that TAK-778 may be a therapeutically useful synthetic agent for articular cartilage repair.  相似文献   

11.
Accumulating evidence indicates that autophagy and inflammatory responses contributes to secondary brain injury after traumatic brain injury (TBI), and toll-like receptor 4 (TLR4) is considered to involvement of this cascade and plays an important role. The present study was designed to determine the hypothesis that administration of resatorvid (TAK-242), a TLR4 antagonist, might provide a neuroprotective effect by inhibit TLR4-mediated pathway in a TBI rat model. Rat subjected to controlled cortical impact injury were injected with TAK-242 (0.5 mg/kg, i.v. injected) 10 min prior to injury. The results demonstrated that TAK-242 treatment significantly attenuated TBI-induced neurons loss, brain edema, and neurobehavioral impairment in rats. Immunoblotting analysis showed that TAK-242 treatment reduced TBI-induced TLR4, Beclin 1, and LC3-II levels, and maintained p62 levels at 24 h. Double immunolabeling demonstrated that LC3 dots co-localized with the hippocampus pyramidal neurons, and TLR4 was localized with the hippocampus neurons and astrocytes. In addition, the expression of TLR4 downstream signaling molecules, including MyD88, TRIF, NF-κB, TNF-α, and IL-1β, was significantly downregulated in hippocampus tissue by Western blot analysis. In conclusion, our findings indicate that pre-injury treatment with TAK-242 could inhibit neuronal autophagy and neuroinflammation responses in the hippocampus in a rat model of TBI. The neuroprotective effects of TAK-242 may be related to modulation of the TLR4-MyD88/TRIF-NF-κB signaling pathway. Furthermore, the study also suggests that TAK-242, an attractive potential drug, may be a promising drug candidate for TBI.  相似文献   

12.
13.
Cardiovascular and renal inflammation induced by Aldosterone (Aldo) plays an important role in the pathogenesis of hypertension and renal fibrosis. Toll-like receptor 4 (TLR4) signaling contributes to inflammatory cardiovascular and renal diseases, but its role in Aldo-induced hypertension and renal damage is not clear. In the current study, rats were treated with Aldo-salt combined with TAK-242 (a TLR4 signaling antagonist) for 4 weeks. Hemodynamic, cardiac and renal parameters were assayed at the indicated time. We found that Aldo-salt–treated rats present cardiac and renal hypertrophy and dysfunction. Cardiac and renal expression levels of TLR4 as well as levels of molecular markers attesting inflammation and fibrosis are increased by Aldo infusion, whereas the treatment of TAK-242 reverses these alterations. TAK-242 suppresses cardiac and renal inflammatory cytokines levels (TNF-a, IL-1β and MCP-1). Furthermore, TAK-242 inhibits hypertension, cardiac and renal fibrosis, and also attenuates the Aldo-induced Epithelial-Mesenchymal Transition (EMT). In experimental hyperaldosteronism, upregulation of TLR4 is correlated with cardiac and renal fibrosis and dysfunction, and a TLR4 signaling antagonist, TAK-242, can reverse these alterations. TAK-242 may be a therapeutic option for salt-sensitive hypertension and renal fibrosis.  相似文献   

14.
A series of novel 1,4-disubstituted piperidine/piperazine derivatives were designed, synthesized and evaluated for their in vitro activities against HIV-1 Bal (R5) infection in CEMX174 5.25M7 cells. A majority of these compounds showed potent anti-HIV-1 activities with IC(50) at nanomolar levels. N-(4-Fluoro-benzyl)piperazine analog B07 hydrochloride exhibited potency against HIV-1 activity similar to that of TAK-220 hydrochloride, but it had much better water solubility (25 mg/ml in phosphate sodium buffer at 25 °C) and oral bioavailability (56%) than TAK-220 hydrochloride (a solubility of 2 mg/ml and oral bioavailability of 1.4%). These results suggest that B07 hydrochloride may serve as a better lead for the development of new anti-HIV-1 therapies or microbicides for treatment and prevent of HIV-1 infection.  相似文献   

15.
Stroke causes brain injury in millions of people world wide each year. Despite the enormity of problem, currently there is no established therapy, which can restore the blood flow at infracted area and also improve the neurological deficit. The present study was carried out to investigate the effect of an endothelin antagonist (TAK-044) in middle cerebral artery (MCA) occlusion model of acute ischemic stroke in rats. Male Wistar rats were pretreated with TAK-044 (5 mg/kg, i.p.) for 7 days and thereafter subjected to focal ischemia by occlusion of MCA using intraluminal thread for two hours. 30 min after reperfusion the animals were subjected to diffusion-weighted imaging (DWI) for assessment of protective effect. Twenty-four hours later the motor performance was tested and subsequently the animals were sacrificed for estimation of markers of oxidative stress; malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Control group received vehicle (saline) and similar experimental protocol was followed. In the TAK-044 pretreated group, percent hemispheric lesion area (% HLA) in DWI was significantly attenuated 17.5 +/- 0.5% as compared to control group 61.2 +/- 5.9%. Significant motor impairment, with significant elevated levels of MDA, decrease in GSH and SOD were observed in the vehicle treated MCA occluded rats. Pretreatment with TAK-044 prevented the motor impairment and significantly reversed the changes in markers of oxidative stress (MDA, GSH and SOD). In addition to well-known vasodilatory effect, TAK-044 has recently been documented to have antioxidant and anti-inflammatory properties. These effects can contribute to the protection afforded by TAK-044 in the present study.  相似文献   

16.
17.
Phosphodiesterase 10A (PDE10A) inhibition is a novel and promising approach for the treatment of central nervous system disorders such as schizophrenia and Huntington’s disease. A novel PDE10A inhibitor, TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-4(1H)-one] has shown high inhibitory activity and selectivity for human recombinant PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity over other phosphodiesterases (PDEs) was more than 15000-fold. TAK-063 at 10 µM did not show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In vitro autoradiography (ARG) studies using rat brain sections revealed that [3H]TAK-063 selectively accumulated in the caudate putamen (CPu), nucleus accumbens (NAc), globus pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. This [3H]TAK-063 accumulation was almost entirely blocked by an excess amount of MP-10, a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of Pde10a-knockout mice. In rat brain sections, [3H]TAK-063 bound to a single high-affinity site with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc shell, respectively. Orally administered [14C]TAK-063 selectively accumulated in PDE10A expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by TAK-063 in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o.) was calculated to produce 50% occupancy in rats. Translational studies with TAK-063 and other PDE10A inhibitors such as those presented here will help us better understand the pharmacological profile of this class of potential central nervous system drugs.  相似文献   

18.
An increasingly large number of antiviral agents that prevent entry of human immunodeficiency virus (HIV) into cells are in preclinical and clinical development. The envelope (Env) protein of HIV is the major viral determinant that affects sensitivity to these compounds. To understand how changes in Env can impact entry inhibitor sensitivity, we introduced six mutations into the conserved coreceptor binding site of the R5 HIV-1 strain YU-2 and measured the effect of these changes on CD4 and coreceptor binding, membrane fusion levels and rates, virus infection, and sensitivity to the fusion inhibitors enfuvirtide (T-20) and T-1249, the CCR5 inhibitor TAK-779, and an antibody to CD4. The mutations had little effect on CD4 binding but reduced CCR5 binding to various extents. In general, reductions in coreceptor binding efficiency resulted in slower fusion kinetics and increased sensitivity to TAK-779 and enfuvirtide. In addition, low CCR5 binding usually reduced overall fusion and infection levels. However, one mutation adjacent to the bridging sheet beta21 strand, P438A, had little effect on fusion activity, fusion rate, infectivity, or sensitivity to enfuvirtide or T-1249 despite causing a marked reduction in CCR5 binding and a significant increase in TAK-779 sensitivity. Thus, our findings indicate that changes in the coreceptor binding site of Env can modulate its fusion activity, infectivity, and entry inhibitor sensitivity by multiple mechanisms and suggest that reductions in coreceptor binding do not always result in prolonged fusion kinetics and increased sensitivity to enfuvirtide.  相似文献   

19.
Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 and MKK3, activated p38 MAPK. Dominant negative forms of these were found to inhibit activation of p38 MAPK by IL-1. Dominant negative RasN17 blocked the effect of the active forms of all but MKK3 and MKK6, indicating that Ras lies downstream of TRAF-6 but upstream of MKK3 and MKK6 on the pathway. Furthermore, the activation of p38 MAPK caused by overexpressing active RasVHa could not be inhibited using dominant negative mutants of MyD88, IRAK, or IRAK-2, or TRAF6, but could be inhibited by dominant negative MKK3 or MKK6. In the same manner, the inhibitory effect of Rap on the activation of p38 by IL-1 occurred at a point downstream of MyD88, IRAK, and TRAF6, since the activation of p38 MAPK by these components was inhibited by overexpressing active Rap1AV12, while neither MKK3 nor MKK6 were affected. Active RasVHa associated with IRAK, IRAK2, and TRAF6, but not MyD88. In addition we found a role for TAK-1 in the activation of p38 MAPK by IL-1, with TAK-1 also associating with active Ras. Our study suggests that upon activation Ras becomes associated with IRAK, Traf-6, and TAK-1, possibly aiding the assembly of this multiprotein signaling complex required for p38 MAPK activation by IL-1.  相似文献   

20.
Nagabukuro H  Doi T 《Life sciences》2005,77(26):3276-3286
The aim of this study was to compare the effects of TAK-802, a novel acetylcholinesterase (AChE) inhibitor, and carbamate AChE inhibitors on the detrusor smooth muscle contractility in vitro using isometric tension measurements. The effects of drugs on the nicotine-induced contractions and basal tone of the isolated detrusor muscle of the guinea pig were examined. All of the drugs, namely, TAK-802, distigmine, neostigmine and pyridostigmine, enhanced the nicotine-induced contractions of the muscle strips in a concentration-dependent manner. On the other hand, while neostigmine and pyridostigmine markedly increased the basal tone, and distigmine slightly but significantly increased the basal tone, TAK-802 had no influence on the basal tone of the muscle strips at all. However, following co-treatment with tetraisopropyl pyrophosphoramide, a selective butyrylcholinesterase (BuChE) inhibitor, TAK-802 also did increase the basal tone. The increase of the basal tone by all of the above treatments was completely abolished by atropine. These results reveal that while all the four AChE inhibitors enhanced endogenous acetylcholine-induced contractions, their effects on the basal tone were clearly different. The effect of carbamate AChE inhibitors of increasing the basal tone could be partly attributed to their dual inhibition of both AChE and BuChE, because both cholinesterases may play a critical role in maintaining the resting tension of the urinary bladder. TAK-802, however, did not increase the basal tone of the detrusor muscle strips, probably because of its selective inhibitory effect against AChE. The effect of carbamate AChE inhibitors on the basal tone of the detrusor muscle may explain the decrease of bladder compliance observed in our previous study on guinea pigs as well as the deterioration of the bladder-storage function reported with their clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号