首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel C6-amino substituted purine nucleoside analogues (212) bearing a modified pyranose-like D ring of the 4-azasteroid moiety were efficiently synthesized through nucleophilic substitution at C6 position of the steroidal nucleoside precursors (1a, b) with versatile amines. All the synthesized new compounds were evaluated for their anticancer activity in vitro against Hela, PC-3 and MCF-7 cell lines. Among them, compounds 4b, 7b and 9b exhibited significant cytotoxicity with the IC50 values of 2.99 μM (PC-3), 2.84 μM, (PC-3) and 2.69 μM (Hela), respectively.  相似文献   

2.
Herein, we designed and synthesized of a novel series of 7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety (10aj, 13aj). All the compounds were evaluated for the IC50 values against five cancer cell lines (A549, PC-3, MCF-7, Hela and HepG2). Seven of the target compounds exhibited moderate to excellent cytotoxicity. For these compounds, we tested their inhibitory activities against mTOR kinase, and four of them were tested their inhibitory activities against PI3Kα kinase in further. The results indicated that the optimized compound 10j showed excellent inhibitory activity and cytotoxicity against mTOR kinase, PI3Kα kinase and five cancer cell lines with IC50 values of 1.1 μM, 0.92 μM and 8.77–14.3 μM. Structure–activity relationships (SARs) and docking studies indicated that the thiopyrano[4,3-d]pyrimidine scaffolds exerted little effect on antitumor activities of target compounds. Substitutions of chromone moiety at C-6 position with carboxyl were benefit to the antitumor activities.  相似文献   

3.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

4.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

5.
Two series of afatinib derivatives bearing cinnamamide moiety (10an and 11ah) were designed, synthesized and evaluated for the IC50 values against four cancer cell lines (A549, PC-3, MCF-7 and Hela). Two selected compounds (10e, 10k) were further evaluated for the inhibitory activity against EGFR and VEGFR2/KDR kinases. Seven of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 values in single-digit μM to nanomole range. Three of them are equal to more active than positive control afatinib against one or more cell lines. The most promising compound 10k showed the best activity against A549, PC-3, MCF-7 and Hela cancer cell lines and EGFR kinase, with the IC50 values of 0.07 ± 0.02 μM, 7.67 ± 0.97 μM, 4.65 ± 0.90 μM and 4.83 ± 1.28 μM, which were equal to more active than afatinib (0.05 ± 0.01 μM, 4.1 ± 2.47 μM, 5.83 ± 1.89 μM and 6.81 ± 1.77 μM), respectively. Activity of compounds 10e (IC50 9.1 nM) and 10k (IC50 3.6 nM) against EGFR kinase were equal to the reference compound afatinib (IC50 1.6 nM). Structure–activity relationships (SARs) and docking studies indicated that replacement of the aqueous solubility 4-(dimethylamino)but-2-enamide group by cinnamamide moiety didn’t decrease the antitumor activity. The results suggested that methoxy substitution had a significant impact on the activity and methoxy substituted on C-4 or C-2,3,4 position was benefit for the activity.  相似文献   

6.
A new sesquiterpene quinone, 21-dehydroxybolinaquinone (5), together with two known related analogues, bolinaquinone (6) and dysidine (7), had been isolated from the Hainan sponge Dysidea villosa. The structure of the new compound 5 was elucidated on the basis of detailed analysis of spectroscopic data and by comparison with related model compounds. Compounds 57 were evaluated for the inhibitory activity against hPTP1B, a potential drug target for treatment of type-II diabetes and obesity, and cytotoxic activity against Hela cell line. The results showed that dysidine (7) had the strongest hPTP1B inhibitory activity with an IC50 value of 6.70 μM and 6 had significant cytotoxic activity against Hela cell line with an IC50 value of 5.45 μM. New compound 5 showed moderate PTP1B inhibitory activity and cytotoxicity with IC50 values of 39.50 and 19.45 μM, respectively.  相似文献   

7.
New 7-acyl camptothecin derivatives were designed and synthesized from camptothecin in a one-pot reaction through a Minisci type-reaction and were evaluated for cytotoxicity against four tumor cell lines, A-549, DU-145, KB, and KB-vin. All of the new compounds showed significant inhibition of human tumor cell growth, with IC50 values ranging from 0.01538 to 13.342 μM. Most of the derivatives were more cytotoxic than irinotecan, and the (7a) and 7-propionyl (7b) analogs exhibited the highest cytotoxic activity against the tumor cell lines tested. This compound class merits further development as anticancer clinical trial candidates.  相似文献   

8.
Two series of Sorafenib derivatives bearing phenylpyrimidine–carboxamide moiety (16ag and 17ap) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, MCF-7 and PC-3). Two selected compounds (17f and 17n) were further evaluated for the activity against VEGFR2/KDR kinase. More than half of the synthesized compounds showed moderate to excellent activity against three cancer cell lines. Compound 17f showed equal activity to Sorafenib against MCF-7 cell line, with the IC50 values of 6.35 ± 0.43 μM. Meanwhile, compound 17n revealed more active than Sorafenib against A549 cell line, with the IC50 values of 3.39 ± 0.37 μM. Structure–activity relationships (SARs) and docking studies indicated that the second series (17ap) showed more active than the first series (16ag). What’s more, the introduction of fluoro atom to the phenoxy part played no significant impact on activity. In addition, the presence of electron-donating on aryl group was benefit for the activity.  相似文献   

9.
A series of nitric oxide (NO) donating derivatives of hederacolchiside A1 bearing triterpenoid saponin motif were designed, synthesized and evaluated for their anticancer activity. All of the tested furoxan-based NO releasing compounds showed significant proliferation inhibitory activities. Especially compound 6a exhibited strong cytotoxicity (IC50 = 1.6–6.5 μM) against four human tumor cell lines (SMMC-7721, NCI-H460, U251, HCT-116) in vitro and the highest level of NO releasing. Furthermore, compound 6a was revealed low acute toxicity to mice and weak haemolytic activity with potent tumor growth inhibition against mice H22 hepatocellular cells in vivo (51.5%).  相似文献   

10.
A novel series of 4-pyrazolyl-1,8-naphthalimide derivatives have been designed and facilely synthesized. For anticancer activity in vitro, most of the compounds were found to be more toxic against human mammary cancer cells (MCF-7) than human cervical carcinoma cells (Hela) and human lung cancer cells (A549). Compounds 4i, 4h, 4b and 4a showed improved cytotoxic activity against MCF-7 cells over amonafide, in particular compounds 4i and 4h, the IC50 values of which against cell lines of MCF-7 were 0.51 μM and 0.79 μM, respectively. The DNA-binding properties of 4i were investigated by UV–vis, fluorescence, and Circular Dichroism (CD) spectroscopies and thermal denaturation. The results indicated that compound 4i as the DNA-intercalating agent exhibited middle binding affinity with CT-DNA.  相似文献   

11.
Several rhein α-aminophosphonates conjugates (5a5q) were synthesized and evaluated for in vitro cytotoxicity against HepG-2, CNE, Spca-2, Hela and Hct-116 cell lines. Some compounds showed relatively high cytotoxicity. Especially, compound 5i exhibited the strongest cytotoxicity against Hct-116 cells (IC50 was 5.32 μM). All the synthesized compounds exhibited low cytotoxicity against HUVEC cells. The mechanism of compound 5i was preliminarily investigated by Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound 5i induced apoptosis in Hct-116 cancer cells. Cell cycle analysis showed that these compound 5i mainly arrested Hct-116 cells in G1 stage. The effects of 5i on the activation of caspases expression indicated that 5i might induce apoptosis via the membrane death receptor pathways. In addition, the binding properties of a model analog 5i to DNA were investigated by methods (UV–vis, fluorescence, CD spectroscopy and FRET-melting) in compare with that of rhein. Results indicated that 5i showed moderate ability to interact ct-DNA.  相似文献   

12.
A series of 1,3,4-thiadiazol-2-amide derivatives (6aw) were designed and synthesized as potential inhibitors of tubulin polymerization and as anticancer agents. The in vitro anticancer activities of these compounds were evaluated against three cancer cell lines by the MTT method. Among all the designed compounds, compound 6f exhibited the most potent anticancer activity against A549, MCF-7 and HepG2 cancer cell lines with IC50 values of 0.03 μM, 0.06 μM and 0.05 μM, respectively. Compound 6f also exhibited significant tubulin polymerization inhibitory activity (IC50 = 1.73 μM), which was superior to the positive control. The obtained results, along with a 3D-QSAR study and molecular docking that were used for investigating the probable binding mode, could provide an important basis for further optimization of compound 6f as a novel anticancer agent.  相似文献   

13.
Designed and synthesized 60 2-thienyl-4-furyl-6-aryl pyridine derivatives were evaluated for their topoisomerase I and II inhibitory activities at 20 μM and 100 μM and cytotoxicity against several human cancer cell lines. Compounds 8, 9, 1129 showed significant topoisomerase II inhibitory activity and compounds 10 and 11 showed significant topoisomerase I inhibitory activity. Most of the compounds (721) possessing 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety showed higher or similar cytotoxicity against HCT15 cell line as compared to standards. Most of the selected compounds displayed moderate cytotoxicity against MCF-7, HeLa, DU145, and K562 cell lines. Structure–activity relationship study revealed that 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety has an important role in displaying biological activities.  相似文献   

14.
A series of new quinoline derivatives of ursolic acid were designed and synthesized in an attempt to develop potential anticancer agents. The structures of these compounds were identified by 1H NMR, 13C NMR, IR and ESI-MS spectra analysis. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (MDA-MB-231, Hela and SMMC-7721). From the results, compounds 3ad displayed significant antitumor activity against three cancer cell lines. Especially, compound 3b was found to be the most potent derivative with IC50 values of 0.61 ± 0.07, 0.36 ± 0.05, 12.49 ± 0.08 μM against MDA-MB-231, HeLa and SMMC-7721 cells, respectively, stronger than positive control etoposide. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound 3b could significantly induce the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The cell cycle analysis also indicated that compound 3b could cause cell cycle arrest of MDA-MB-231 cells at G0/G1 phase.  相似文献   

15.
A series of novel sorafenib derivatives, 9aw, was designed and synthesized in high yields using various substituted anilines, and their antiproliferative activities against HCT116, PC-3 and MDA-MB-231 cell lines were also evaluated and described. All compounds exhibited potent antiproliferative activity against HCT116 and PC-3 cells with IC50 = 2.8–52.0 and 2.2–45.6 μM; compounds 9p and 9q demonstrated competitive antiproliferative activities to sorafenib against all three cancer cell lines, the cytotoxicity of compound 9r is more potent than that of sorafenib. Compounds (9g, 9p, 9q and 9r) were chosen for further evaluation of the anti-angiogenesis activity, and showed the inhibition of sprout formation from aortic ring ex vivo. The structures of all the newly synthesized compounds were determined by 1H NMR, 13C NMR and HRMS.  相似文献   

16.
Three series of novel heterocyclic azoles derivatives containing pyrazine (5a5k, 8a8k and 11a11k) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential telomerase inhibitors. Among the oxadiazole derivatives, compound 5c showed the most potent biological activity against SW1116 cancer cell line (IC50 = 2.46 μM against SW1116 and IC50 = 3.55 μM for telomerase). Compound 8h performed the best in the thiadiazole derivatives (IC50 = 0.78 μM against HEPG2 and IC50 = 1.24 μM for telomerase), which was comparable to the positive control. While compound 11f showed the most potent biological activity (IC50 = 4.12 μM against SW1116 and IC50 = 15.03 μM for telomerase) among the triazole derivatives. Docking simulation by positioning compounds 5c, 8h and 11f into the telomerase structure active site was performed to explore the possible binding model. The results of apoptosis demonstrated that compound 8h possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 8h with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell. Therefore, the introduction of oxadiazole, thiadiazole and triazole structures reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

17.
A total of 15 novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. All compounds showed better inhibition on SIRT2 as compared to SIRT1. Among these, compound 5j displayed the best inhibitory activity for SIRT1 (IC50 = 58.43 μM) as well as for SIRT2 (IC50 = 45.12 μM). Cell cytotoxicity assays also showed that compound 5j possesses good antitumor activity against two different cancer cell lines derived from breast cancer (MCF-7 and MDA-MB-468). A simple structure–activity-relationship (SAR) study of the newly synthesized benzimidazole derivatives was also discussed.  相似文献   

18.
In the present article, we have synthesized a combinatorial library of 3,5-diaryl pyrazole derivatives using 8-(2-(hydroxymethyl)-1-methylpyrrolidin-3-yl)-5,7-dimethoxy-2-phenyl-4H-chromen-4-one (1) and hydrazine hydrate in absolute ethyl alcohol under the refluxed conditions. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their anticancer activity against five cell lines (breast cancer cell line, prostate cancer cell line, promyelocytic leukemia cell line, lung cancer cell line, colon cancer cell line) and anti-inflammatory activity against TNF-α and IL-6. Out of 15 compounds screened, 2a and 2d exhibited promising anticancer activity (61–73% at 10 μM concentration) against all selected cell lines and IL-6 inhibition (47% and 42% at 10 μM concentration) as in comparison to standard flavopiridol (72–87% inhibition at 0.5 μM) and dexamethasone (85% inhibition at 1 μM concentration), respectively. Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Out of 15, four 3,5-diaryl pyrazole derivatives exhibiting potent inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase. The IC50 values of compounds (2a, 2d, 2h and 2l) for monophenolase inhibition were determined to range between 1.5 and 30 μM. Compounds 2a, 2d, 2h and 2l also inhibited diphenolase significantly with IC50 values of 29.4, 21.5, 2.84 and 19.6 μM, respectively. All four 3,5-diaryl pyrazole derivatives were active as tyrosinase inhibitors (2a, 2d, 2h and 2l), and belonging to competitive inhibitors. Interestingly, they all manifested simple reversible slow-binding inhibition against diphenolase.  相似文献   

19.
In continuing our efforts to identify small molecules able to inhibit c-Met kinase, three series of novel 6,7-disubstituted-4-phenoxyquinoline derivatives (23aw, 26ad and 30ad) bearing (thio)semicarbazone scaffold were designed, synthesized and evaluated for their cytotoxicity. The biological data revealed that most compounds exhibited moderate-to-excellent activity against HT-29, MKN-45, A549 cancer cell lines and relative poor potency toward MDA-MB-231 cell as well as hardly any cytotoxicity in normal PBL cell. Eleven compounds were further examined for their inhibitory activity against c-Met kinase and three compounds (23h, 23n and 26a) demonstrated good inhibitory activity. This work resulted in the discovery of a potent c-Met inhibitor 23n, bearing 2-hydroxy-3-allylphenyl group at R2 moiety, as a valuable lead molecule, which possessed remarkable cytotoxicity and high selectivity against A549 and HT-29 cell lines with IC50 values of 11 nM and 27 nM. Besides, it displayed excellent c-Met kinase inhibition on a single-digital nanomolar level (IC50 = 1.54 nM). Meanwhile, the results from preliminarily in vivo study reflected that compound 23n showed promising overall PK profiles, consistent with the efficacy in both MKN-45 and HT-29 tumor xenograft mice model. These results clearly indicated that compound 23n is a potent and highly selective c-Met inhibitor and its favorable in vitro and in vivo profiles warrant further investigation.  相似文献   

20.
Three series of novel sulfonylurea podophyllotoxin derivatives were designed, synthesized, and evaluated for in vitro cytotoxicity against four tumor cell lines (A-549, DU-145, KB and KBvin). Compounds 14c (IC50: 1.41–1.76 μM) and 14e (IC50: 1.72–2.01 μM) showed superior cytotoxic activity compared with etoposide (IC50: 2.03 to >20 μM), a clinically available anticancer drug. Significantly, most of the compounds exhibited comparable cytotoxicity against the drug-resistant tumor cell line KBvin, while etoposide lost activity completely. Preliminary structure–activity relationship (SAR) correlations indicated that the 4′-O-methyl functionality in podophyllotoxin analogues may be essential to maintain cytotoxic activity, while an arylsulfonylurea side chain at podophyllotoxin’s 4β position can significantly improve cytotoxic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号