首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine kinases (SphKs) catalyze the transfer of phosphate from adenosine triphosphate (ATP) to sphingosine to generate sphingosine 1-phosphate (S1P), an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of SphK enzymatic activity uses [γ-32P]ATP and sphingosine as substrates, with the radiolabeled S1P product recovered by organic extraction, displayed by thin layer chromatography, and quantified by liquid scintillation counting. Although this assay is sensitive and accurate, it is slow and labor-intensive; thus, it precludes the simultaneous screening of more than a few inhibitor compounds. Here we describe a 96-well assay for SphKs that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, postreaction transfers, and chromatography. Furthermore, our assay enables assessment of both inhibitors and substrates, and it can detect endogenous SphK activity in cell and tissue extracts. The SphK kinetic parameter, Km, and the Ki values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well-suited for the screening of chemical libraries of SphK inhibitors.  相似文献   

2.
Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models. Owning to the effectiveness of SKI-178, we sought to further refine the chemotype while maintaining “on-target” SKI and MDA activities. Herein, we modified the “linker region” between the substituted phenyl rings of SKI-178 through a structure guided approach. These studies have yielded the discovery of an SKI-178 congener, SKI-349, with log-fold enhancements in both SphK inhibition and cytotoxic potency. Importantly, SKI-349 also demonstrates log-fold improvements in therapeutic efficacy in a retro-viral transduction model of MLL-AF9 AML as compared to previous studies with SKI-178. Together, our results strengthen the hypothesis that simultaneous targeting of the sphingosine kinases (SphK1/2) and the induction of mitotic spindle assembly checkpoint arrest, via microtubule disruption, might be an effective therapeutic strategy for hematological malignancies including AML.  相似文献   

3.
Sphingosine kinases (SphK1, SphK2) are main regulators of sphingosine-1-phosphate (S1P), which is a pleiotropic lipid mediator involved in numerous physiological and pathophysiological functions. SphKs are targets for novel anti-cancer and anti-inflammatory agents that can promote cell apoptosis and modulate autoimmune diseases. Herein, we describe the design, synthesis and evaluation of an aminothiazole class of SphK inhibitors. Potent inhibitors have been discovered through a series of modifications using the known SKI-II scaffold to define structure–activity relationships. We identified N-(4-methylthiazol-2-yl)-(2,4′-bithiazol)-2′-amine (24, ST-1803; IC50 values: 7.3 μM (SphK1), 6.5 μM (SphK2)) as a promising candidate for further in vivo investigations and structural development.  相似文献   

4.
The importance of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) in inflammation has been extensively demonstrated. As an intracellular second messenger, S1P plays an important role in calcium signaling and mobilization, and cell proliferation and survival. Activation of various plasma membrane receptors, such as the formyl methionyl leucyl phenylalanine receptor, C5a receptor, and tumor necrosis factor α receptor, leads to a rapid increase in intracellular S1P level via SphK stimulation. SphK and S1P are implicated in various chronic autoimmune conditions such as rheumatoid arthritis, primary Sjögren’s syndrome, and inflammatory bowel disease. Recent studies have demonstrated the important role of SphK and S1P in the development of arthritis by regulating the pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets.  相似文献   

5.
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.  相似文献   

6.
Recent studies suggest that sphingolipid metabolism is altered during type 2 diabetes. Increased levels of the sphingolipid ceramide are associated with insulin resistance. However, a role for sphingolipids in pancreatic beta cell function, or insulin production, and release remains to be established. Our studies in MIN6 cells and mouse pancreatic islets demonstrate that glucose stimulates an intracellular rise in the sphingolipid, sphingosine 1-phosphate (S1P), whereas the levels of ceramide and sphingomyelin remain unchanged. The increase in S1P levels by glucose is due to activation of sphingosine kinase 2 (SphK2). Interestingly, rises in S1P correlate with increased glucose-stimulated insulin secretion (GSIS). Decreasing S1P levels by treatment of MIN6 cells or primary islets with the sphingosine kinase inhibitor reduces GSIS. Moreover, knockdown of SphK2 alone results in decreased GSIS, whereas knockdown of the S1P phosphatase, Sgpp1, leads to a rise in GSIS. Treatment of mice with the sphingosine kinase inhibitor impairs glucose disposal due to decreased plasma insulin levels. Altogether, our data suggest that glucose activates SphK2 in pancreatic beta cells leading to a rise in S1P levels, which is important for GSIS.  相似文献   

7.
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the “sphingolipid rheostat”, producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

8.
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.  相似文献   

9.
We had found previously that neurotrophin-3 (NT-3) is a potent stimulator of cAMP-response element binding protein (CREB) phosphorylation in cultured oligodendrocyte progenitors. Here, we show that CREB phosphorylation in these cells is also highly stimulated by sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is known to be a potent mediator of numerous biological processes. Moreover, CREB phosphorylation in response to NT-3 involves sphingosine kinase 1 (SphK1), the enzyme that synthesizes S1P. Immunocytochemistry and confocal microscopy indicated that NT-3 induces translocation of SphK1 from the cytoplasm to the plasma membrane of oligodendrocytes, a process accompanied by increased SphK1 activity in the membrane fraction where its substrate sphingosine resides. To examine the involvement of SphK1 in NT-3 function, SphK1 expression was down-regulated by treatment with SphK1 sequence-specific small interfering RNA. Remarkably, the capacity of NT-3 to protect oligodendrocyte progenitors from apoptotic cell death induced by growth factor deprivation was abolished by down-regulating the expression of SphK1, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Altogether, these results suggest that SphK1 plays a crucial role in the stimulation of oligodendrocyte progenitor survival by NT-3, and demonstrate a functional link between NT-3 and S1P signaling, adding to the complexity of mechanisms that modulate neurotrophin function and oligodendrocyte development.  相似文献   

10.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

11.
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.  相似文献   

12.
Sphingosine 1-phosphate (S1P) is currently one of the most intensely studied lipid mediators. Interest in S1P has been propelled by the development of fingolimod, an S1P receptor agonist prodrug, which revealed both a theretofore unsuspected role of S1P in lymphocyte trafficking and that such modulation of the immune system achieves therapeutic benefit in multiple sclerosis patients. S1P is synthesized from sphingosine by two SphKs (sphingosine kinases) (SphK1 and SphK2). Manipulation of SphK levels using molecular biology and mouse genetic tools has implicated these enzymes, particularly SphK1, in a variety of pathological processes such as fibrosis, inflammation and cancer progression. The results of such studies have spurred interest in SphK1 as a drug target. In this issue of the Biochemical Journal, Schnute et al. describe a small molecule inhibitor of SphK1 that is both potent and selective. Such chemical tools are essential to learn whether targeting S1P signalling at the level of synthesis is a viable therapeutic strategy.  相似文献   

13.
Sphingosine kinases (SphKs), of which there are two isoforms, SphK1 and SphK2, have been implicated in regulation of many important cellular processes. We have developed an assay for monitoring SphK1 and SphK2 activity in real time without the need for organic partitioning of products, radioactive materials, or specialized equipment. The assay conveniently follows SphK-dependent changes in 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled sphingosine (Sph) fluorescence and can be easily performed in 384-well plate format with small reaction volumes. We present data showing dose-proportional responses to enzyme, substrate, and inhibitor concentrations. The SphK1 and SphK2 binding affinities for NBD-Sph and the IC50 values of inhibitors determined were consistent with those reported with other methods. Because of the versatility and simplicity of the assay, it should facilitate the routine characterization of inhibitors and SphK mutants and can be readily used for compound library screening in high-throughput format.  相似文献   

14.
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of bone marrow-derived mast cells (BMMC). Fyn kinase is required for FcepsilonRI coupling to SphK1 and -2 and for subsequent S1P production. Normal activation of SphK1 and -2 was restored by expression of wild type Fyn but only partly with a kinase-defective Fyn, indicating that induction of SphK1 and SphK2 depended on both catalytic and noncatalytic properties of Fyn. Downstream of Fyn, the requirements for SphK1 activation differed from that of SphK2. Whereas SphK1 was considerably dependent on the adapter Grb2-associated binder 2 and phosphatidylinositol 3-OH kinase, SphK2 showed minimal dependence on these molecules. Fyn-deficient BMMC were defective in chemotaxis and, as previously reported, in degranulation. These functional responses were partly reconstituted by the addition of exogenous S1P to FcepsilonRI-stimulated cells. Taken together with our previous study, which demonstrated delayed SphK activation in Lyn-deficient BMMC, we propose a cooperative role between Fyn and Lyn kinases in the activation of SphKs, which contributes to mast cell responses.  相似文献   

15.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known.Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts.Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.  相似文献   

16.
Sphingosine-1-phosphate (S1P) is a potent lysolipid involved in a variety of biological responses important for cancer progression. Therefore, we investigated the role of sphingosine kinase type 1 (SphK1), the enzyme that makes S1P, in the motility, growth, and chemoresistance of MCF-7 breast cancer cells. Epidermal growth factor (EGF), an important growth factor for breast cancer progression, activated and translocated SphK1 to plasma membrane. SphK1 was required for EGF-directed motility. Downregulation of SphK1 in MCF-7 cells reduced EGF- and serum-stimulated growth and enhanced sensitivity to doxorubicin, a potent chemotherapeutic agent. These results suggest that SphK1 may be critical for growth, metastasis and chemoresistance of human breast cancers.  相似文献   

17.
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.  相似文献   

18.
In this study, we report that low doses of tumor necrosis factor-alpha (TNFalpha) promote myogenesis in C2C12 myoblasts. Moreover, the cytokine increased sphingosine kinase (SphK) activity and induced SphK1 translocation to membranes. The inhibition of SphK functionality by various approaches abrogated the pro-myogenic effect of TNFalpha. Moreover, silencing of S1P(2) impaired the positive action of TNFalpha on myogenesis. These results represent the first evidence that SphK/S1P(2) axis is required for the regulation of myogenesis by TNFalpha. In view of the physiological role of TNFalpha in muscle regeneration, the present finding reinforces the notion that SphK/S1P(2) signaling is critically implicated in myogenesis.  相似文献   

19.
Sphingosine-1-phosphate (S1P), formed by sphingosine kinases (SphKs), regulates cellular proliferation and migration by acting as an agonist at specific receptors or intracellularly. Since S1P's effects are probably dependent on subcellular localization of its formation and degradation, we have studied the influence of G protein-coupled receptors on the localization of SphK1. Activation of Gq-coupled receptors induced a profound, rapid (half-life 3–5 s) and long-lasting (> 2 h) translocation of SphK1 to the plasma membrane. This was mimicked by expression of constitutively active G protein α-subunits specifically of the Gq family. Classical Gq signalling pathways, or phosphorylation at Ser225, phospholipase D and Ca2+/calmodulin were not involved in M3 receptor-induced SphK1 translocation in HEK-293 cells. Translocation was associated with S1P receptor internalization, which was dependent on catalytic activity of SphK1 and S1P receptor binding and thus resulted from S1P receptor cross-activation. It is concluded that SphK1 is an important effector of Gq-coupled receptors, linking them via cross-activation of S1P receptors to Gi and G12/13 signalling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号