首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Produced by Staphylococcus aureus, SplB belongs to the chymotrypsin-like serine protease family. Since the biological role of SplB protease is unknown, the design and application of its specific inhibitors may help to reveal the function of this enzyme. Until now no SplB inhibitors have been reported. Herein, we present the design and synthesis of novel α-aminophosphonic analogues of glutamine, as well as their peptidyl derivatives. The inhibitory effects of these compounds towards the newly discovered SplB serine protease from S. aureus are characterized. We have also investigated the influence of aromatic ester substituents on inhibitory potency towards SplB. One of the compounds-Cbz-Glu-Leu-Gln(P)(OC(6)H(4)-4-O-CH(3))(2)-displayed an apparent second-order inhibition rate value of 1400M(-1)s(-1).  相似文献   

2.
The design, synthesis, and IMPDH inhibitory activity of a series of phosphonic acid-containing analogues of mycophenolic acid are described.  相似文献   

3.
4.
5.
A library of hydroxycinnamic acid amides (HCAAs) and analogues were synthesized using solid-phase synthesis technique. These compounds were screened for antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) (11 strains) and vancomycin-resistant S. aureus (VRSA) (4 strains). Dihydrocaffeoyl analogues showed activity against VRSA which were better than the reference drugs, vancomycin and oxacillin. These compounds also exhibited antibacterial activity against MRSA, which were more potent than oxacillin.  相似文献   

6.
Previous studies from this laboratory have identified in bovine pineal gland a glutamate receptor site with a dissociation equilibrium constant (KD) value of 0.534 μM and a receptor density (Bmax) value of 4.84 pmol/mg protein. This pH- and temperature-dependent binding site showed stereospecificity, was activated by Ca2+ and displayed affinity for both glutamate receptor agonists and antagonists. The role of this glutamate receptor site was investigated by studying the effects of select glutamate receptor agonists and antagonists and of γ-aminobutyric acid on the basal- and on the norepinephrine-stimulated activity of arylalkylamine N-acetyltransferase in rat pineal glands that were incubated in Dulbecco's Modified Eagle Medium at 37°C for 20 min in an atmosphere of 5% CO2/95% O2. l-Glutamate, l-aspartate and glutamate receptor agonists such as γ-amino-3-hydroxy-5-methylisoxazole-4-propinonic acid and quisqualate were all also potent inhibitors of norepinephrine-induced stimulation of N-acetyltransferase. On the other hand, the known glutamate receptor antagonists such as d-glutamylaminomethylsulphonic acid and γ-d-glutamyltaurine stimulated the basal activity of N-acetyltransferase.Evidence of a high concentration of glutamic acid, the presence of glutamate receptors and the inhibition by glutamate receptor agonists of pineal N-acetyltransferase compel one to speculate that, in addition to its well-known metabolic roles, glutamate may modulate in an unknown fashion the activity of melatonin synthesizing enzyme, and the functions of mammalian pineal glands.  相似文献   

7.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

8.
9.
Glycerol monolaurate (GML) inhibits the expression of virulence factors in Staphylococus aureus and the induction of vancomycin resistance in Enterococcus faecalis, presumably by blocking signal transduction. Although GML is rapidly hydrolyzed by bacteria, one of the products, lauric acid, has identical inhibitory activity and is metabolized much more slowly. At least four distinct GML-hydrolyzing activities are identified in S. aureus: the secreted Geh lipase, residual supernatant activity in a geh-null mutant strain, a novel membrane-bound esterase, and a cytoplasmic activity.  相似文献   

10.
11.
The modifications of oligodeoxyribonucleotides include replacement of the other chain either all-PS (S-ODNs), or end-capped with several PS (SO-ODNs) groups at both 3'- and 5'-ends. A general synthesis of phosphorothioate analogues of oligodeoxyribonucleotides is described using the new phosphite. In assays of HIV, oligomers (S-ODNs) with complete replacement of phosphodiesters with phosphorothioate groups were found to be very active. Finally of particular interest is S-ODNs-rev or tat (20mers) which possessed slightly higher anti-HIV activity than S-dC28 itself. By contrast, the unmodified oligomers (ODNs) as well as SO-ODNs did not have any inhibitory effect.  相似文献   

12.
13.
14.
15.
A discussion of the solid-phase synthesis of ornithine derived sulfonamide hydroxamic acids is illustrated. These analogues are shown to be potent, non-peptide inhibitors of procollagen C-proteinase (PCP).  相似文献   

16.
The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.  相似文献   

17.
18.
1. In order to obtain an effective ligand for affinity chromatography of the low molecular weight acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) from human red cells nine phosphonic and two arsonic acid substrate analogues were investigated as potential inhibitors. The two forms of acid phosphatase type B (b1 and b2) were isolated and partially purified using conventional methods and the inhibitory action of the substrate analogs investigated. 2. Four of the phosphonic acids were relatively effective competitive inhibitors. It appears that certain structural and electronic requirements have to be fulfilled by the phosphonic acids in order to exhibit significant affinity for the enzyme. A high affinity appears to require the presence of a bulky, hydrophobic moiety which has to be separated from the phosphorus atom by the distance of one atom. 3. p-Aminobenzylphosphonic acid exerted the highest affinity for acid phosphatase with a pH optimum at 6.5. Ki values of 4 . 10(-4) and 6 . 10(-4) M were found for the b1 and b2 forms, respectively. 4. Coupling of p-aminobenzylphosphonic acid to Agarose yielded an effective and specific affinity medium. By means of affinity chromatography using this medium, acid phosphatase was purified 500-fold in a single step.  相似文献   

19.
Novel tripeptidyl C-terminal Michael acceptors with an ester replacement of the P(2)-P(3) amide bond were investigated as irreversible inhibitors of the human rhinovirus (HRV) 3C protease (3CP). When screened against HRV serotype-14 the best compound was shown to have very good 3CP inhibition (k(obs)/[I]=270,000M(-1)s(-1)) and potent in vitro antiviral activity (EC(50)=7.0nM).  相似文献   

20.
Several analogues of N3-fumaramoyl-L-2,3-diaminopropanoic acid were synthesized and evaluated for inhibition of glucosamine-6-phosphate synthetase activity. The syntheses were accomplished by acylation reaction of N2-tert.-butoxycarbonyl-L-2,3-diaminopropanoic acid (Boc-A2pr) or N2-tert.-butoxycarbonyl-L-2,4-diaminobutanoic acid (Boc-A2-bu) with the N-succinimidoyl esters of several derivatives of alpha, beta-unsaturated acids 2a-d followed by deprotection of the Boc groups. The obtained compounds were tested for inhibition of glucosamine synthetase isolated from Salmonella typhimurium and Saccharomyces cerevisiae. The results indicated that among the synthesized compounds, N3-4-methoxyfumaroyl-L-2,3-diaminopropanoic acid (FMDP) was the most powerful inhibitor of glucosamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号