首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor–receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor–receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine–phosphate electrostatic interactions. These receptor–receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.  相似文献   

3.
The goal of our study is to evaluate the contribution of CXCL12 rs1746048 (hg19, chr10:44775574) to the risk of CHD in Han Chinese, and to summarize its role in CHD through meta-analysis of existing studies among various ethnic groups. Significant association is observed between rs1746048-C and an increased risk of CHD in Han Chinese (χ2 = 5.41, df = 1, P = 0.02). Post hoc analysis reveals an even stronger association of rs1746048 with the risk of CHD for subjects aged 65 years or older (genotype: χ2 = 8.39, df = 2, P = 0.015; allele: χ2 = 9.13, df = 1, P = 0.003, odd ratio (OR) = 1.91, 95% confidential interval (CI) = 1.25–2.91). A break down analysis by gender shows that rs1746048 is likely a CHD risk factor under the recessive model in males (CC + CT versus TT: P = 0.05, χ2 = 3.59, df = 1, OR = 1.72, 95% CI = 1.00–3.04). In addition, a meta-analysis of ten studies among over 107,000 individuals confirms that rs1746048 is a risk factor of CHD (P < 0.0001, OR = 1.12, 95% CI = 1.09–1.15) and this agrees with the findings of our case–control study in Han Chinese.  相似文献   

4.
Exponential growth in the number of compounds with experimentally verified activity towards particular target has led to the emergence of various databases gathering data on biological activity. In this study, the ligands of family A of the G Protein-Coupled Receptors that are collected in the ChEMBL database were examined, and special attention was given to serotonin receptors. Sets of compounds were examined in terms of their appearance over time, they were mapped to the chemical space of drugs deposited in DrugBank, and the emergence of structurally new clusters of compounds was indicated. In addition, a tool for detailed analysis of the obtained visualizations was prepared and made available online at http://chem.gmum.net/vischem, which enables the investigation of chemical structures while referring to particular data points depicted in the figures and changes in compounds datasets over time.  相似文献   

5.
6.
Even though the genomes of several major species have been sequenced, many orphan receptors with unknown ligands and mechanisms of action remain in the CNS. The 2 glutamate receptor (GluR2) is one of such receptors expressed predominantly in the cerebellar Purkinje cells. On the basis of amino acid similarity, it belongs to ionotropic glutamate receptor (iGluR) family, which mediates fast excitatory neurotransmission in the mammalian CNS. Although its null-mutant mice show prominent motor discoordination, the mechanisms by which GluR2 participates in the cerebellar functions have been unclear. To gain insight into GluR2s mechanisms, we recently generated mice that express either a wild-type or a mutant GluR2 transgene, in which the conserved arginine in GluR2s N-terminal putative ligand-binding motif was disrupted. By breeding these transgenic mice onto a GluR2–/– background, we obtained two transgenic rescue lines. Surprisingly, the mutant GluR2 transgene was as effective as the wild-type GluR2 in rescuing the GluR2-null mice. As the disrupted arginine residue is highly conserved from ancestral bacterial periplasmic amino acid-binding proteins to mammalian iGluRs, we propose that GluR2 may not require glutamate-like amino acids and may function in an unconventional manner. This transgenic rescue approach to investigating orphan receptors is a relatively easy but powerful method when a knockout mouse with a distinct phenotype is already available. The advantages and limitations of this approach, together with certain cautions in interpreting the resulting data, are discussed in this review.  相似文献   

7.
8.
Recent studies have demonstrated that cargo exit from the endoplasmic reticulum (ER) may be directed by ER export motifs recognized by components of the coat protein II (COPII) vesicles. However, little is known about ER export motifs and vesicle targeting of the G protein-coupled receptor (GPCR) superfamily. Here, we have demonstrated that a triple Arg (3R) motif in the third intracellular loop functions as a novel ER export signal for α(2B)-adrenergic receptor (α(2B)-AR). The 3R motif mediates α(2B)-AR interaction with Sec24C/D and modulates ER exit, cell surface transport and function of α(2B)-AR. Furthermore, export function of the 3R motif is independent of its position within α(2B)-AR and can be conferred to CD8 glycoprotein. These data provide the first evidence implicating that export of GPCRs is controlled by code-directed interactions with selective components of the COPII transport machinery.  相似文献   

9.
X-ray fiber diffraction experiments on Alzheimer Aβ(1–40) fibrils formed in an assembly process thought to simulate a portion of the pathophysiological process in Alzheimer's disease, indicated protofilaments with tilted β-strands rather than strands oriented perpendicular to the fibril axis as is usually interpreted from cross-β patterns. The protofilament width and tilt angle determined by these experiments were used to predict a β-strip helix model – a β-helix-like structure in which multiple identical polypeptide molecules assemble in-register to form a helical sheet structure such that the outer strands 1 and m join with a register shift t – with m = 11 and t = 22. Starting from untwisted β-sheets comprising 10, 11, and 12 strands, multiple explicit solvent molecular dynamics (MD) simulations were performed to determine whether the sheets form β-strip helices matching the dimensions of the experimentally measured protofilament. In the simulations, the predicted 11-strand sheets curled up to form a closed β-strip helix-like structure with dimensions matching experimental values, whereas the 10- and 12-strand sheets did not form a closed helical structure. The 12-strand structure did, however, show similarity to a cross-β structure determined by a solid-state NMR experiment. The 11-strand β-strip helix resembles a trans-membrane β-barrel which could explain the ability of small oligomers of Aβ(1–40) to form toxic ion channels. A further consequence of opposite sides of the 11-strand strip coming together at a register shift of 22 is end-to-end joins between neighboring β-strip helices, resulting in a protofilament that keeps growing in both directions.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
We synthesized stapled helical leucine-based peptides (DPI-01-07) containing 2-aminoisobutyric acid and a covalent cross-linked unit as inhibitors of vitamin D receptor (VDR)–coactivator interactions. The effects of these peptides on the human VDR were examined in an inhibition assay based on the receptor cofactor assay system, and one of them, DPI-07, exhibited potent inhibitory activity (IC50: 3.2 μM).  相似文献   

11.
Human 2(C2)-adrenergic receptor was expressed in Escherichia coli as a fusion protein with Bacillus circulans var. alcalophilus cyclomaltodextrin glucanotransferase. For the determination of the expression level (0.6 mg of solubilized fusion protein l–1 of E. coli culture), a two-site immunometric assay based on two monoclonal antibodies with different epitopes was developed.  相似文献   

12.
The afferent flow in A fibers from cutaneous receptors was studied in acute experiments with cats. A decline in the number of fibers activated during adequate receptor stimulation was observed at 5 and 35 sec after the excitation of sympathetic efferents. Similar changes in the afferent flow were recorded in identical time intervals after the preliminary stretching and cooling of the skin. The results obtained indicate that the quantitative characteristics of afferent flow during the first 30 sec after stimulation of the sympathetic chain are primarily due to the change in the mechanical state of the tissues surrounding the receptors.N. I. Lobachevskii Institute of Mathematics and Cybernetics, Gor'kii University. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 517–521, July–August, 1985.  相似文献   

13.
14.
15.
Our study on the highly charged N-terminal peptide of the human chemokine receptor CXCR3 by spectroscopic methods in solution and by means of molecular dynamics simulations showed that the charge content modulates the intrinsic structural preference of its flexible backbone. Collectively, our findings suggest that the structural organization of a protein should be seen as a part of a continuum in which the ratio between electrostatic and hydrophobic interactions and the intrinsic flexibility are important properties used to optimize the folding. When this ratio changes and the structure is intrinsically flexible, the structural organization of the system moves along the continuum of the possible conformational states. By all this combined information, one can describe the structure of CXCR3(1–48) as an ensemble of conformations. In fact, the peptide shows stretches of negative charges embedded in a flexible sequence which can be used to maximize promiscuous interactions relevant to molecular recognition but globally the peptide appears as a poly-structured globule-like ensemble that is dynamically stabilized by H-bonds. We have approached the study of the most populated ensembles with subset selection to explain our experimental data also by evidencing that the changes into the fraction of charged residues discriminate between dynamically poly-structured states, conceivably because of small free energy barriers existing between the different conformations of CXCR3(1–48). Therefore, the overlap of a highly flexible backbone, negatively charged residues and sites which can be modified by post-translational modifications represent the structural organization that controls the molecular mechanisms underlying the biological functions carried out by CXCR3(1–48).  相似文献   

16.
17.
RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?   总被引:2,自引:0,他引:2  
RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators.  相似文献   

18.
Regulator of G protein Signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates both conventional and unconventional G protein signaling pathways. Like other RGS (regulator of G protein signaling) proteins, RGS14 acts as a GTPase accelerating protein to terminate conventional Gα(i/o) signaling. However, unlike other RGS proteins, RGS14 also contains a G protein regulatory/GoLoco motif that specifically binds Gα(i1/3)-GDP in cells and in vitro. The non-receptor guanine nucleotide exchange factor Ric-8A can bind and act on the RGS14·Gα(i1)-GDP complex to play a role in unconventional G protein signaling independent of G protein-coupled receptors (GPCRs). Here we demonstrate that RGS14 forms a Gα(i/o)-dependent complex with a G(i)-linked GPCR and that this complex is regulated by receptor agonist and Ric-8A (resistance to inhibitors of cholinesterase-8A). Using live cell bioluminescence resonance energy transfer, we show that RGS14 functionally associates with the α(2A)-adrenergic receptor (α(2A)-AR) in a Gα(i/o)-dependent manner. This interaction is markedly disrupted after receptor stimulation by the specific agonist UK14304, suggesting complex dissociation or rearrangement. Agonist-mediated dissociation of the RGS14·α(2A)-AR complex occurs in the presence of Gα(i/o) but not Gα(s) or Gα(q). Unexpectedly, RGS14 does not dissociate from Gα(i1) in the presence of stimulated α(2A)-AR, suggesting preservation of RGS14·Gα(i1) complexes after receptor activation. However, Ric-8A facilitates dissociation of both the RGS14·Gα(i1) complex and the Gα(i1)-dependent RGS14·α(2A)-AR complex after receptor activation. Together, these findings indicate that RGS14 can form complexes with GPCRs in cells that are dependent on Gα(i/o) and that these RGS14·Gα(i1)·GPCR complexes may be substrates for other signaling partners such as Ric-8A.  相似文献   

19.
20.
Abstract

Ligand–receptor interactions can be implicated in many pathological events such as chronic neurodegenerative diseases. Thus, the discovery of molecules disrupting this type of interactions could be an interesting therapeutic approach. Polyphenols are well known for their affinity for proteins and several studies have characterized these direct interactions. But studying the direct influence of multi-therapeutic drugs on a ligand–receptor complex relevant to a neurodegenerative disorder is a challenging issue. Solution NMR, molecular modeling and iterative calculations were used to obtain information about the interaction between a phenolic compound, α-glucogallin (α-2) and a ligand/fragment receptor complex neurotensin (NT) and its receptor NTS1. The α-2 was shown to bind to NT and a peptidic fragment of its NTS1 receptor, independently. Although the formation of the corresponding ligand–receptor complex did not seem to be affected, this experimental modeling protocol will enable the evaluation of other anti-amyloidogenic compounds such as blockers of NT–NTS1 binding. These types of studies help in understanding the specificity and influence in binding and can provide information to develop new molecules with a putative pharmacological interest.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号