首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (218) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 μM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure–activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors.  相似文献   

2.
Most of the endogenous free d-serine (about 90%) in the brain is produced by serine racemase (SR). d-Serine in the brain is involved in neurodegenerative disorders and epileptic states as an endogenous co-agonist of the NMDA-type glutamate receptor. Thus, SR inhibitors are expected to be novel therapeutic candidates for the treatment of these disorders. In this study, we solved the crystal structure of wild-type SR, and tried to identify a new inhibitor of SR by in silico screening using the structural information. As a result, we identified two hit compounds by their in vitro evaluations using wild-type SR.Based on the structure of the more potent hit compound 1, we synthesized 15 derivatives and evaluated their inhibitory activities against wild-type SR. Among them, the compound 9C showed relatively high inhibitory potency for wild-type SR. Compound 9C was a more potent inhibitor than compound 24, which was synthesized by our group based upon the structural information of the mutant-type SR.  相似文献   

3.
A series of new peptidomimetics targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was identified based on the potent and selective pentapeptide Plk1 PBD inhibitor PLHSpT. Unnatural amino acid residues were introduced to the newly designed compound and the N-terminal substituent of the peptidomimetic was investigated. The optimized compound 9 inhibited the Plk1 PBD with IC50 of 0.267 μM and showed almost no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Biolayer interferometry studies demonstrated that compound 9 showed potent binding affinity to Plk1 with a Kd value of 0.164 μM, while no Kd were detected against Plk2 and Plk3. Compound 9 showed improved stability in rat plasma compared to PLHSpT. Binding mode analysis was performed and in agreement with the observed experimental results. There are only two natural amino acids remained in the chemical structure of 9. This study may provide new information for further research on Plk1 PBD inhibitors.  相似文献   

4.
Facile synthesis of de-O-sulfated salacinols (3) was developed by employing the coupling reaction of an epoxide, 1,2-anhydro-3,4-di-O-benzyl-d-erythritol (9) with 2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-epithio-d-arabinitol (10) as the key reaction. The reported structure of a potent α-glucosidase inhibitor named neosalacinol (8), isolated recently from Ayurvedic medicine Salacia oblonga, was proved incorrect, and revised to be de-O-sulfated salacinol formate (3c) by comparison of the spectroscopic properties with those of the authentic specimen synthesized. Discrepancies and confusion in the literature concerning the NMR spectroscopic properties of salacinol (1) have also been clarified.  相似文献   

5.
Protein lysine methyltransferase G9a is widely considered as an appealing antineoplastic target. Herein we present an integrated workflow combining shape-based virtual screening and structure-based molecular modification for the identification of novel G9a inhibitors. The shape-based similarity screening through ROCS overlay on the basis of the structure of UNC0638 was performed to identify CPUY074001 contained a 6H-anthra[1,9-cd]isoxazol-6-one scaffold as a hit. Analysis of the binding mode of CPUY074001 with G9a and 3D-QSAR results, two series compounds were designed and synthesized. The derivatives were confirmed to be active by in vitro assay and the SAR was explored by docking stimulations. Besides, several analogues showed acceptable anti-proliferative effects against several cancer cell lines. Among them, CPUY074020 displayed potent dual G9a inhibitory activity and anti-proliferative activity. Furthermore, CPUY074020 induced cell apoptosis in a dose-dependent manner and displayed a significant decrease in dimethylation of H3K9. Simultaneously, CPUY074020 showed reasonable in vivo PK properties. Altogether, our workflow supplied a high efficient strategy in the identification of novel G9a inhibitors. Compounds reported here can serve as promising leads for further study.  相似文献   

6.
The comparative characterization of a series of 4-acyl-1,6-dialkylpiperazin-2-ones as potent cell entry inhibitors of the hemorrhagic fever arenavirus Lassa (LASV) is disclosed. The resolution and examination of the individual enantiomers of the prototypical LASV cell entry inhibitor 3 (16G8) is reported and the more potent (–)-enantiomer was found to be 15-fold more active than the corresponding (+)-enantiomer. The absolute configuration of (–)-3 was established by asymmetric synthesis of the active inhibitor (–)-(S)-3 (lassamycin-1). A limited deletion scan of lassamycin-1 defined key structural features required of the prototypical inhibitors.  相似文献   

7.
Starting from previously disclosed equally potent cathepsin K and S inhibitor 4-propyl-6-(3-trifluoromethylphenyl)pyrimidine-2-carbonitrile 1, a novel 2-phenyl-9H-purine-6-carbonitrile scaffold was identified to provide potent and selective cathepsin S inhibitors.  相似文献   

8.
The discovery and optimization of a novel series of G9a/GLP (EHMT2/1) inhibitors are described. Starting from known G9a/GLP inhibitor 5, efforts to explore the structure-activity relationship and optimize drug properties led to a novel compound 13, the side chain of which was converted to tetrahydroazepine. Compound 13 showed increased G9a/GLP inhibitory activity compared with compound 5. In addition, compound 13 exhibited improved human ether-a-go-go related gene (hERG) inhibitory activity over compound 5 and also improved pharmacokinetic profile in mice (oral bioavailability: 17 to 40%). Finally, the co-crystal structure of G9a in complex with compound 13 provides the basis for the further development of tetrahydroazepine-based G9a/GLP inhibitors.  相似文献   

9.
A series of 4-aryl-thieno[1,4]diazepin-2-one were synthesized and evaluated for their antiproliferative activities against the A375P melanoma and U937 hematopoietic cell lines. Several compounds showed very potent antiproliferative activities toward both cell lines and the activities were better than that of sorafenib, the reference standard. Derivatives were made as amide (8a8i, 9a9m) and urea (10a10d, 11a11d) with diverse hydrophobic moieties. One of the most potent inhibitor 10d, 1-(4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-(4-(2-oxo-2,3-dihydro-1H-thieno [3,4-b][1,4]diazepin-4-yl)phenyl)urea was found to be very potent inhibitor of multi-protein kinases including FMS kinase (IC50?=?3.73?nM) and is a promising candidate for further development in therapeutics for cancer.  相似文献   

10.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

11.
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80?nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49?nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10?mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.  相似文献   

12.
13.
Inhibitors against Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) and B2 (TbrPDEB2) have gained interest as new treatments for human African trypanosomiasis. The recently reported alkynamide tetrahydrophthalazinones, which show submicromolar activities against TbrPDEB1 and anti-T. brucei activity, have been used as starting point for the discovery of new TbrPDEB1 inhibitors. Structure-based design indicated that the alkynamide-nitrogen atom can be readily decorated, leading to the discovery of 37, a potent TbrPDEB1 inhibitor with submicromolar activities against T. brucei parasites. Furthermore, 37 is more potent against TbrPDEB1 than hPDE4 and shows no cytotoxicity on human MRC-5 cells. The crystal structures of the catalytic domain of TbrPDEB1 co-crystalized with several different alkynamides show a bidentate interaction with key-residue Gln874, but no interaction with the parasite-specific P-pocket, despite being (uniquely) a more potent inhibitor for the parasite PDE. Incubation of blood stream form trypanosomes by 37 increases intracellular cAMP levels and results in the distortion of the cell cycle and cell death, validating phosphodiesterase inhibition as mode of action.  相似文献   

14.
Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.  相似文献   

15.
Bisindolylmethane thiosemicarbazides 1-18 were synthesized, characterized by 1H NMR and ESI MS and evaluated for urease inhibitory potential. All analogs showed outstanding urease inhibitory potentials with IC50 values ranging between 0.14?±?0.01 to 18.50?±?0.90?μM when compared with the standard inhibitor thiourea having IC50 value 21.25?±?0.90?μM. Among the series, analog 9 (0.14?±?0.01?μM) with di-chloro substitution on phenyl ring was identified as the most potent inhibitor of urease. The structure activity relationship has been also established on the basis of binding interactions of the active analogs. These binding interactions were identified by molecular docking studies.  相似文献   

16.
We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.  相似文献   

17.
The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a kinact/Ki value of 112,000 M?1 s?1 and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.  相似文献   

18.
By-product 9a exhibited potent cytotoxicity against both SK-OV-3 and A549 cell lines. The structure of 9a was characterized using 1D and 2D NMR experiments and confirmed by synthesis to afford a diastereomeric mixture (16a) that was identical to 9a, as well as a pair of diastereomers (R)-16b and (S)-16c. The preliminary SAR study demonstrated that analogs with an (R)-configuration were slightly more potent than analogs with an (S)-configuration. In addition, α,α-gem-dimethyl analogs 16gi were the most potent analogs in this series, exhibiting similar potency to docetaxel and greater potency than Taxol against the SK-OV-3 cell line. For the A549 cell line, analogs 16gi were more potent (>65-fold) than both docetaxel and Taxol.  相似文献   

19.
The synthesis and structure–activity relationships (SAR) of novel, potent imidazo[1,2-a]pyrazine-based Aurora kinase inhibitors are described. The X-ray crystal structure of imidazo[1,2-a]pyrazine Aurora inhibitor 1j is disclosed. Compound 10i was identified as lead compound with a promising overall profile.  相似文献   

20.
This article describes our work towards the identification of a potent and selective inhibitor of mouse chitotriosidase (mCHIT1). A series of small molecule inhibitors of mCHIT1 and mAMCase have been developed from early lead compound 1. Examination of synthetized analogues led to discovery of several novel highly potent compounds. Among them compound 9 (OAT-2068) displays a remarkable 143-fold mCHIT1 vs. mAMCase selectivity. To explain the observed SAR molecular docking experiments were performed, which were in line with the experimental data from the enzymatic assays. Inhibitor 9 (OAT-2068) was found to have an excellent pharmacokinetic profile. This, together with high activity and selectivity, makes the compound an ideal and unique tool for studying the role of CHIT1 in biological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号