首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that poly(l-lysine)-graft-dextran cationic comb-type copolymers accelerate strand exchange reaction between duplex DNA and its complementary single strand by >4 orders of magnitude, while stabilizing duplex. However, the stabilization of the duplex is considered principally unfavourable for the accelerating activity since the strand exchange reaction requires, at least, partial melting of the initial duplex. Here we report the effects of different cationic moieties of cationic comb-type copolymers on the accelerating activity. The copolymer having guanidino groups exhibited markedly higher accelerating effect on strand exchange reactions than that having primary amino groups. The high accelerating effect of the former is considered to be due to its lower stabilizing effect on duplex DNA, resulting from its increased affinity to single-stranded DNA. The difference in affinity was clearly demonstrated by a fluorescence correlation spectroscopy study; the interaction of the former with single-stranded DNA still remained high even at 1 M NaCl, while that of the latter completely disappeared. These results suggest that some modes of interactions, such as hydrogen bonding, other than electrostatic interactions between the copolymers having guanidino groups and DNAs may be involved in strand exchange activation.  相似文献   

2.
Abstract

Various comb-type copolymer containing a polycation as a main chain was design to construct delivery systems of DNAs. The comb-type copolymers having cell-specific polysaccharides were proved to be useful to deliver DNA to the target cells in vivo. Of interest, the copolymers with abundant side chains of hydrophilic polymers are capable of stabilizing DNA triplex. Further, injectable nanoparticles for controlled releases of DNAs were fabricated from the copolymer and a biodegradable polymer.  相似文献   

3.
A new bis-pyrene-labeled oligonucleotide probe (BP-probe) has been designed for the detection of a single base mismatch in single strand (ss) DNA as a target. The sequence of BP-probe was chosen to form stem-loop structure similar to a molecular beacon (MB-probe), yielding bis-pyrene-labeled molecular beacon (BP-MB-probe). Partially double stranded (ds) BP-MB-probes were prepared by complexation with oligonucleotides whose sequences are complementary to the loop segment but not to the stem and exchangeable with the target DNA. The partially ds BP-MB-probes were shown to exhibit monomer fluorescence as major fluorescence, while the ss BP-MB-probe in the stem-loop form displays strong excimer fluorescence. The strand exchange reactions between partially ds BP-MB-probe and target ss DNA in the presence of cationic comb-type copolymer as a catalyst were monitored by the excimer fluorescence changes. The existence of a mismatched base can be determined by the slower PASE rates compared with fully matched DNA.  相似文献   

4.
The accelerating effect of cationic substances on DNA strand exchange reaction between 20 bp DNA duplex and its complementary single strand was studied. A comb-type polycationic copolymer which is composed of poly (L-lysine) backbone and dextran graft chain (PLL-g-Dex) and known to stabilize triplex DNA expedites the strand exchange reaction under physiological relevant conditions. Electrostatically small excess of the copolymer increased DNA strand exchange rate by 300-fold while large excess of spermine or cethyltrimethylammonium bromide, cationic detergent known to promote markedly hybridization of complementary DNA strands, showed slight effect. It should be noted that the copolymer promotes the strand exchange reaction while it stabilizes double stranded DNA.  相似文献   

5.
Polycation comb-type copolymers which are composed of poly(L-lysine) backbone and dextran graft chain (PLL-graft-Dex) accelerated DNA duplex and triplex formation and stabilized under physiologically relevant condition remarkably. In this study, we have examined the ability of polycation copolymer in promoting strand exchange between duplex DNA and its complementary single-stranded DNA. It was demonstrated that the strand exchange rate was considerably accelerated by the polycation comb-type copolymer.  相似文献   

6.
The optimization of DNA-cationic polymer complexation is crucial for nonviral gene delivery. Although physicochemical characterization of the interaction between DNA and cationic polymers has recently attracted more attention in the nonviral DNA delivery field, the literature on the effect of varying polycation charge density on DNA-cationic polymer complexation is still scarce. Thus, the aim of this study was to systematically assess the influence of the degree of ionization of a weak cationic polyelectrolyte (poly[2-(dimethylamino)ethyl methacrylate] or DMAEMA homopolymer) on its ability to form complexes with DNA. This was achieved by varying the solution pH from 4.0 to 8.0 and analyzing the resulting effects on the binding affinity, thermodynamic properties, complex size, and morphology. Lowering the solution pH led to higher degrees of ionization for the cationic polymer and hence greater binding affinities with DNA, as judged by the increased propensity of the former to displace ethidium bromide from DNA and also by relatively low monomer:nucleotide molar ratio (0.8:1) required to retard the migration of free DNA. Isothermal titration microcalorimetry studies further confirmed that a stronger interaction occurred at low pH than at high pH. By decreasing the pH from 8.0 to 6.6, K(obs) increased from 7.8 x 10(5) to 20.4 x 10(5) M(-1). More efficient condensation at low pH was demonstrated by the reduction of ethidium bromide fluorescence in the loading wells from gel electrophoresis, decreased complex sizes without agglomeration occurring at high polymer/DNA ratios, together with discrete and dense spherical complexes observed in TEM studies. This may be attributed to the presence of electrostatic stabilization from excess cationic polymer chains, which provide a repulsive shell around the polymer/DNA complex. The physicochemical data indicate that the increased degree of ionization for the DMAEMA homopolymer at lower pH results in higher binding affinity, smaller and more compact complexes, and more efficient condensation. These findings therefore highlight the importance of the degree of ionization on DNA complex formation for weak cationic polyelectrolytes.  相似文献   

7.
Polyelectrolyte multilayers (PEMs) fabricated from cationic polymers and DNA have been investigated broadly as materials for surface-mediated DNA delivery. One attractive aspect of this "multilayered" approach is the potential to exploit the presence of cationic polymer "layers" in these films to deliver DNA to cells more effectively. Past studies demonstrate that these films can promote transgene expression in vitro and in vivo, but significant questions remain regarding roles that the cationic polymers could play in promoting the internalization and processing of DNA. Here, we report physicochemical and in vitro cell-based characterization of DNA-containing PEMs fabricated using fluorescently end-labeled derivatives of a degradable polycation (polymer 1) used in past studies of surface-mediated transfection. This approach permitted simultaneous characterization of polymer and DNA in solution and in cells using fluorescence-based techniques, and provided information about the locations and behaviors of polymer 1 that could not be obtained using other methods. LSCM and flow cytometry experiments revealed that polymer 1 and DNA released from film-coated objects were both internalized extensively by cells and that they were colocalized to a significant extent inside cells (e.g., ~58% of DNA was colocalized with polymer). Fluorescence anisotropy measurements of solutions containing partially eroded films were also consistent with the presence of aggregates of polymer 1 and DNA in solution (e.g., after release from surfaces, but prior to internalization by cells). Our results support the view that polymer 1, which is incorporated into these materials as "layers" rather than as part of optimized, preformed "polyplexes", can act to promote or enhance surface-mediated DNA delivery. More broadly, our results suggest opportunities to improve the delivery properties of DNA-containing PEMs by incorporation of additional "layers" of other conventional cationic polymers designed to address specific intracellular barriers to transfection, such as endosomal escape, more effectively.  相似文献   

8.
Oligodeoxynucleotide (ODN) conjugates with the polylysine comb-type copolymer having an ability to promote and stabilize duplex and triplex DNA formation were prepared. 5'-Aminated ODN was succinylated with succinic anhydride. The resulting ODNs having carboxyl terminus were coupled with epsilon-amino groups of the comb-type copolymer using water soluble carbodiimide. The conjugate free from unconjugated ODNs was obtained by gel permeation chromatography. The resulting conjugate maintains ability to form duplex and triplex DNA as estimated by melting curve analysis. Both specificity and stability of the triplex DNA formation were increased by employing the ODN-copolymer conjugates compared to those with their mixture.  相似文献   

9.
10.
In this study, a colorimetric method was exploited to detect bisphenol A (BPA) based on BPA-specific aptamer and cationic polymer-induced aggregation of gold nanoparticles (AuNPs). The principle of this assay is very classical. The aggregation of AuNPs was induced by the concentration of cationic polymer, which is controlled by specific recognition of aptamer with BPA and the reaction of aptamer and cationic polymer forming “duplex” structure. This method enables colorimetric detection of BPA with selectivity and a detection limit of 1.50 nM. In addition, this colorimetric method was successfully used to determine spiked BPA in tap water and river water samples.  相似文献   

11.
Sun C  Gaylord BS  Hong JW  Liu B  Bazan GC 《Nature protocols》2007,2(9):2148-2151
A fluorescence-based microarray technique that does not require target DNA labeling is detailed. This 'label-free' approach utilizes a cationic, water-soluble conjugated polymer PFBT (poly[9,9'-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-co-alt-4,7-(2,1,3-benzothiadiazole) dibromide]), and neutral PNA (peptide nucleic acid) hybridization probes. DNA hybridization to immobilized PNA spots results in a change in the net charge at that particular surface. Electrostatic interactions between the cationic polymer and negatively charged DNA bind the polymer to the hybrid DNA/PNA complex. By exciting the conjugated polymer at 488 nm on a commercial microarray scanner, the presence of the target is directly indicated by the fluorescence emission of the polymer. This feature eliminates the necessity of target labeling required in traditional microarray protocols. There are five steps involved in the procedure before scanning or imaging the array: (i) slide hydration, (ii) target hybridization, (iii) post-hybridization washing, (iv) polymer application and (v) polymer washing. Each step takes 20 min to 1 h. The overall protocol requires approximately 2-3 h.  相似文献   

12.
Overcoming the barriers to efficient gene transfer is a fundamental goal of biotechnology. A versatile approach to enhance the delivery of nonviral DNA involves complexation with cationic polymers, which can be designed to overcome the barriers to effective gene transfer. More recently, DNA release from a polymer substrate or scaffold has been shown to enhance gene transfer, likely by increasing DNA concentrations in the cell microenvironment. We propose a novel approach that combines these two strategies in which cationic polymer/DNA complexes are tethered to a substrate that supports cell adhesion. The cationic polymers package the DNA for efficient internalization and the surface tethering functions to maintain elevated concentrations in the cell microenvironment for cells adhered to the substrate. The cationic polymer polylysine (degree of polymerization equal to 19 or 150) was modified with biotin groups, which was confirmed by mass spectrometry and biochemical analysis. Complex formation of DNA with biotinylated-polylysine, or mixtures of biotinylated and nonbiotinylated polylysines, was confirmed by gel electrophoresis. Plasmid DNA encoding for the reporter gene beta-galactosidase was complexed with different mixtures of biotinylated and nonbiotinylated polylysine and incubated on neutravidin (nonglycosylated avidin)-coated surfaces. DNA surface densities ranging from 0.1 to 4.3 microg/cm2 were observed and found to be a function of the number of biotin groups, the molecular weight of the polylysine, and the amount of DNA. HEK293T or NIH/3T3 cells were then seeded onto the DNA-modified surfaces, and transfection was quantified at 48 and 96 h. Transfection by the DNA surfaces was observed with both cell lines, and expression levels up to 100 fold greater than bulk delivery of the complexes was obtained. Transfection was found to be a function of the surface DNA quantities and the number of tethers on the complex. Transfected cells were observed only in the region in which DNA complexes were tethered, suggesting that the location of transfected cells can be specifically controlled. Surface tethering of DNA represents a promising approach to enhancing gene transfer and spatially controlling gene delivery, which may have applications to a multitude of fields ranging from tissue engineering to functional genomics.  相似文献   

13.
Gao Y  Yin Q  Chen L  Zhang Z  Li Y 《Bioconjugate chemistry》2011,22(6):1153-1161
The aim of this work was to explore the structure--activity relationships (SAR) of a series of novel linear cationic click polymers with various structures for in vitro gene delivery and in vivo gene transfer. The experimental results revealed that the minimal structure variation could result in a crucial effect on DNA-binding ability, buffering capacity, and the cellular delivery capacity of polymer, all of which brought about the obvious effects on their transfection efficiencies. The polymer synthesized from diazide monomer containing bis-ethylenediamine unit and dialykene monomer containing bis-ethylene glycol unit (B(2)) could effectively condense DNA into complex nanoparticles (B(2)Ns), which showed the highest in vitro transfection efficiency. The biodistribution and transfection efficiency of B(2)Ns in nude mice bearing tumor demonstrated the ability of effectively delivering DNA into tumor tissue. These results implied that this gene vector based on linear cationic click polymer could be a promising gene delivery system for tumor gene therapy.  相似文献   

14.
A series of end-functionalized poly(trimethylene carbonate) DNA carriers, characterized by low cationic charge density and pronounced hydrophobicity, is used to study structural effects on in vitro gene delivery. As the DNA-binding moieties are identical in all polymer structures, the differences observed between the different polymers are directly related to the functionality and length of the polymer backbone. The transfection efficiency and cytotoxicity of the polymer/DNA complexes are thus found to be dependent on a combination of polymer charge density and functionality, highlighting the importance of such structural considerations in the development of materials for efficient gene delivery.  相似文献   

15.
Methods for real time, highly selective and sensitive polynucleotide detection are of vast scientific and economic importance. Fluorescence resonance energy transfer (FRET)-based assays which take advantage of the collective response of water-soluble conjugated polymers (CPs) and the self-assembly characteristic of aqueous polyelectrolytes have been widely used for the detection of DNA, RNA, protein and small molecules. The detection sensitivity of CP-based biosensor is dependent on the signal amplification of dye emission upon excitation of CP relative to that upon direct excitation of the dye. Using cationic polyfluorene derivatives and chromophore (fluorescein or Texas Red) labeled single-stranded DNA molecules (ssDNA-C*) as donor/acceptor pairs, we show that in addition to the spectral overlap, orientation and distance between the donor and the acceptor, the energy levels and fluorescence quenching of the donor/acceptor within the polymer/DNA-C* complexes are also important factors that affect the signal output of dye emission.  相似文献   

16.
We have previously reported artificial gene-regulation systems responding to cyclic AMP-dependent protein kinase (PKA) using a cationic polymer. However, this polymer alone cannot deliver any gene into living cells. In the present work, we modified the signal-responsive polymer to the RGD peptide for the introduction of a polymer/DNA complex into living cells and succeeded in regulating the gene expression responding to intracellular PKA activation.  相似文献   

17.
In order to develop a new gene delivery vector, a novel cationic poly(organophosphazene) was synthesized by stepwise nucleophilic substitutions of poly(dichlorophosphazene) with a hydrophilic methoxy-poly(ethylene glycol) (MPEG) as a shielding group and a branched tetra(L-lysine), LysLys(LysEt)(2), as a cationic moiety. The cationic polymer has shown to form a polyplex by DNA condensation and very low in vitro cytotoxicity probably due to the shielding effect of MPEG, which provides a basis for improving the low gene transfection yield of cationic polyphosphazenes.  相似文献   

18.
A label-free electrochemical method for the detection of DNA-PNA hybridization using a water-soluble, ferrocene-functionalized polythiophene transducer and single-stranded PNA probes on the nanogold modified electrode is investigated. Nanogold modified electrodes can largely increase the immobilization amount of ss-PNA capture probe and lead to an increase of the electrical signal. The ferrocene-containing cationic polythiophene do not interact electrostatically with the PNA probes due to the absence of the anionic phosphate groups on the PNA probes. But after DNA-PNA hybridization, cationic polythiophene is adsorbed on the DNA backbone, giving a clear hybridization detection signal in differential pulse voltammetry (DPV). Very good discrimination against non-complementary DNA and four-base mismatch DNA is observed. These studies show that the proposed method can provide an alternative for expanding the range of detection methods available for DNA hybridization.  相似文献   

19.
Nanoparticulate complexes of plasmid DNA (pDNA) with cationic liposomes/polymer, of approx 200 nm diameter, were encapsulated with a high degree of efficiency within calcium pectinate gel beads. Electron microscopy showed the DNA nanocomplexes to be evenly distributed throughout the gel matrix. Controlled release of pDNA-lipid nanocomplexes was achieved by the action of pectinase enzymes, whereas release of naked and polymer-complexed DNA was found to be more greatly influenced by the swelling behavior of the polysaccharide matrices in buffer alone. Physical degradation of pDNA within pectin beads was found to be accelerated during bead drying, most probably as a result of shear forces generated within the gel matrices by the evaporation of water. Plasmid complexation with cationic liposomes provided a greater degree of protection for the DNA during bead drying than complexation with cationic polymer, and was shown to successfully transfect cultured cells after release from the beads, via the action of pectinase. Observations concerning the physical stability of nanocomplexed pDNA, and its encapsulation within and release from pectin gel beads, are discussed with reference to the electrostatic interactions existing between the various components.  相似文献   

20.
We describe two types of artificial gene-regulation systems responding to cyclic AMP-dependent protein kinase (PKA) or caspase-3. These molecular systems use newly synthesized cationic polymers, PAK and PAC. The PAK polymer includes substrate oligopeptide for PKA, ARRASLG, as receptor of PKA signal, while the PAC polymer possesses oligopeptide that is comprised of a substrate sequence of caspase-3, DEVD, and a cationic oligolysine, KKKKKK. These polymers formed stable complexes with DNA to totally suppress the gene expression. However, PKA or caspase-3 signal disintegrates the PAK-DNA or the PAC-DNA complex, respectively. This liberates the DNA and activated the gene expression. These systems are the first concept of an intracellular signal-responsive gene-regulation system using artificial polymer. We expect that these systems can be applied to the novel highly cell specific gene delivery strategy that is involved in our previously proposed new drug delivery concept, the drug delivery system based on responses to cellular signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号