首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently thiolated oligonucleotides have attracted significant interest due to their ability to efficiently undergo stable bond formation with gold nanoparticles and surfaces to form DNA conjugates. In this respect we became interested in the synthesis of oligonucleotides that bear short thioalkyl functions located at the nucleobase. Here we present a strategy for the synthesis of DNA oligonucleotides that bear 5-(mercaptomethyl)-2'-deoxyuridine moieties. The building blocks were synthesized in a straightforward manner from thymidine. Only moderate changes of standard protocols for automated DNA synthesis are required for the generation of modified oligonucleotides containing the thiolated building blocks.  相似文献   

3.
The pyrimidine bases of RNA are uracil (U) and cytosine (C), while thymine (T) and C are used for DNA. The C(5) position of C and U is unsubstituted, whereas the C(5) of T is substituted with a Me group. Miller et al. hypothesized that various C(5)-substituted uracil derivatives were formed during chemical evolution, and that C(5)-substituted U derivatives may have played important roles in the transition from an 'RNA world' to a 'DNA-RNA-protein world'. Hyperthermophilic bacteria and archaea are considered to be primitive organisms that are evolutionarily close to the universal ancestor of all life on earth. Thus, we examined the substrate specificity of several C(5)-substituted or C(5)-unsubstituted dUTP and dCTP analogs for several DNA polymerases from hyperthermophilic bacteria, hyperthermophilic archaea, and viruses during PCR or primer extension reaction. The substrate specificity of the C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides varied greatly depending on the type of DNA polymerase. The significance of this difference in substrate specificity in terms of the origin and evolution of the DNA replication system is discussed briefly.  相似文献   

4.
Photomodification of a 302-membered single-stranded DNA fragment by 5'-mono- and 3',5'-di-N-(2-oxyethyl)phenazine (Phn) derivatives of oligonucleotides has been investigated. Under strong laser irradiation (lambda 532 nm; power density 2,5 GV/cm2, irradiation dose 30 J) the DNA fragment in the presence of Phn-reagents was significantly destructed (up to 70-95%). The level of complementary addressed modification (24-51%) is a direct function of the length of oligonucleotide address of the photoreagent and the amount of Phn residues, stabilizing the complementary complex. The character of the nonaddressed modification is close to the statistic one, although for a number of photoreagents a rather efficient nonspecific modification of 5'-terminal sequence of target DNA has been detected. Of interest also is an unusually broad positional direction of the DNA fragment photomodification in the area of perfect complementary coupling of 5'-Phn-reagents.  相似文献   

5.
The employment of periodate oxidation in the chemistry of nucleic acids and their components is reviewed. The reaction mechanism, structural requirements to substrates, and synthesis of dialdehyde derivatives of nucleosides, nucleotides, and oligonucleotides are discussed in the first part. The second part involves chemical, physico-chemical, and biological properties of the dialdehyde derivatives, as well as their use for the affinity modifications of proteins.  相似文献   

6.
7.
The preparation of a novel phosphoramidite monomer based on thyminyl acetic acid coupled to the secondary nitrogen of 2-(2-amino-ethylamino)ethanol is described. This monomer can be used to attach a deoxynucleotide to the carboxy terminus of a PNA oligomer by solid-phase synthesis. The resulting PNA primer is recognized as a substrate by various DNA polymerases.  相似文献   

8.
A triplex-forming oligonucleotide (TFO) could be a useful molecular tool for gene therapy and specific gene modification. However, unmodified TFOs have two serious drawbacks: low binding affinities and high sequence-dependencies. In this paper, we propose a new strategy that uses a new set of modified nucleobases for four-base recognition of TFOs, and thereby overcome these two drawbacks. TFOs containing a 2’-deoxy-4N-(2-guanidoethyl)-5-methylcytidine (dgC) residue for a C-G base pair have higher binding and base recognition abilities than those containing 2’-OMe-4N-(2-guanidoethyl)-5-methylcytidine (2’-OMegC), 2’-OMe-4N-(2-guanidoethyl)-5-methyl-2-thiocytidine (2’-OMegCs), dgC and 4S-(2-guanidoethyl)-4-thiothymidine (gsT). Further, we observed that N-acetyl-2,7-diamino-1,8-naphtyridine (DANac) has a higher binding and base recognition abilities for a T-A base pair compared with that of dG and the other DNA derivatives. On the basis of this knowledge, we successfully synthesized a fully modified TFO containing DANac, dgC, 2’-OMe-2-thiothymidine (2’-OMesT) and 2’-OMe-8-thioxoadenosine (2’-OMesA) with high binding and base recognition abilities. To the best of our knowledge, this is the first report in which a fully modified TFO accurately recognizes a complementary DNA duplex having a mixed sequence under neutral conditions.  相似文献   

9.
Novel bicyclo nucleosides, 2'-O,4'-C-ethylene nucleosides and 2'-O,4'-C-propylene nucleosides, were synthesized as building blocks for antisense oligonucleotides to further optimize the 2'-O,4'-C-methylene-linkage of bridged nucleic acids (2',4'-BNA) or locked nucleic acids (LNA). Both the 2'-O,4'-C-ethylene- and propylene-linkage within these nucleosides restrict the sugar puckering to the N-conformation of RNA as do 2',4'-BNA/LNA. Furthermore, ethylene-bridged nucleic acids (ENA) having 2'-O,4'-C-ethylene nucleosides had considerably increased the affinity to complementary RNA, and were as high as that of 2',4'-BNA/LNA (DeltaT(m)=+3 approximately 5 degrees C per modification). On the other hand, addition of 2'-O,4'-C-propylene modifications in oligonucleotides led to a decrease in the affinity to complementary RNA. As for the stability against nucleases, incorporation of one 2'-O,4'-C-ethylene or one 2'-O,4'-C-propylene nucleoside into oligonucleotides considerably increased their resistance against exonucleases to an extent greater than 2',4'-BNA/LNA. These results indicate that ENA is more suitable as an antisense oligonucleotide and is expected to have better antisense activity than 2',4'-BNA/LNA.  相似文献   

10.
A general synthetic method for Fmoc-protected monomers of all four diastereomeric aminoethyl peptide nucleic acid (aepPNA) has been developed. The key reaction is the coupling of nucleobase-modified proline derivatives and Fmoc-protected aminoacetaldehyde by reductive alkylation. Oligomerization of the aepPNAs up to 10mer was achieved by Fmoc-solid phase peptide synthesis methodology. Preliminary binding studies of these aepPNA oligomers with nucleic acids suggested that the "cis-" homothymine aepPNA decamers with (2'R,4'R) and (2'S,4'S) configurations can bind, albeit with slow kinetics, to their complementary RNA [poly(adenylic acid)] but not to the complementary DNA [poly(deoxyadenylic acid)]. On the other hand, the trans homothymine aepPNA decamers with (2'R,4'S) and (2'S,4'R) configurations failed to form stable hybrid with poly(adenylic acid) and poly(deoxyadenylic acid). No hybrid formation could be observed between a mixed-base (2'R,4'R)-aepPNA decamer with DNA and RNA in both antiparallel and parallel orientations.  相似文献   

11.
Xylo-Configured oligonucleotides (XNA) containing a novel conformationally restricted 2'-deoxy-2'-fluoro-beta-D-xylofuranosyl nucleotide monomer, a novel conformationally locked 2'-amino-2'-deoxy-2'-N,4'-C-methylene-beta-D-xylofuranosyl nucleotide monomer, and a known 2'-deoxy-beta-D-xylofuranosyl nucleotide monomer (XNA monomers) have been synthesized and their hybridization towards DNA and RNA complements studied. Thermal denaturation studies of nine-mer mixed-base sequences composed of a mixture of XNA monomers and DNA monomers revealed preferential hybridization towards RNA complements relative to DNA complements. For 14-mer homo-thymine XNAs containing thirteen XNA monomers, stable complexes towards single-stranded DNA and RNA were formed at pH 7. Gel-shift experiments revealed these complexes to involve at least two XNA strands per DNA or RNA target strand.  相似文献   

12.
Novel thymidine analogue triphosphates, which have an sp3-hybridized carbon at the C5 alpha-position with amino-linker arms, a methyl ester, or a carboxyl group at the C5 sidearm, were good substrates for primer-extension reactions by DNA polymerase from Pyrococcus kodakaraensis (KOD Dash DNA polymerase), yielding exclusively full-length products. The resulting modified DNA was further allowed to react with a functional molecule such as fluorescein isothiocyanate. By contrast, only truncated products were formed from the thymidine analogue substrate bearing the amino-linker arm or the negatively charged carboxyl group using Taq, Tth DNA polymerase, or DNA polymerase I from E. coli (Klenow fragment). The results indicate either that the thymidine analogue was not accepted by the enzymes, or that the polymerases could not extend the products, once the analogue had been incorporated, depending on the type of the analogue. A conventional thymidine analogue bearing an aminopropenyl group at the C5-position was accepted by all enzymes, among which KOD Dash DNA polymerase showed the highest activity for the polymerization with this analogue. Templates bearing the thymidine analogues in place of one thymidine residue were read by KOD Dash, Taq, Tth DNA polymerases, and the Klenow fragment giving the full-length product. KOD Dash DNA polymerase could expand structural diversities of substrates that can be used to prepare modified DNAs.  相似文献   

13.
We have examined the efficiency of DNA photooxidation in DNA/PNA duplex and DNA/(PNA)(2) triplex for the first time. DNA/PNA duplex was cleaved at GG steps by external riboflavin with high efficiency like specific GG cleavage in DNA/DNA duplex. However, the 5'G selectivity of the GG oxidation in DNA/PNA duplex was much lower than that observed in DNA/DNA duplex. Remote DNA oxidation of oxidant-tethered DNA/PNA duplex was considerably suppressed. In contrast, the formation of DNA/(PNA)(2) triplex by hybridization with two PNA strands completely inhibited the remote GG oxidation, indicating that PNA acts as an inhibition for remote oxidative DNA damage.  相似文献   

14.
We have used DNase I footprinting, fluorescence and ultraviolet (UV) melting experiments and circular dichroism to demonstrate that, in the parallel triplex binding motif, 2′-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) has very high affinity for AT relative to all other Watson–Crick base pairs in DNA. Complexes containing two or more substitutions with this nucleotide analogue are stable at pH 7.0, even though they contain several C.GC base triplets. These modified triplex-forming oligonucleotides retain exquisite sequence specificity, with enhanced discrimination against YR base pairs (especially CG). These properties make BAU a useful base analogue for the sequence-specific creation of stable triple helices at pH 7.0.  相似文献   

15.
Carbamate linked prolyl nucleic acids are obtained in high yield and purity under mild conditions in solution and solid phase. p-Nitrophenylchloroformate is used as the activating reagent for alcohol. Homooligomers of PrCNA do not bind to DNA. The introduction of this modification in PNA sequences destabilizes the triplexes, inspite of enhancement in the base stacking.  相似文献   

16.
Pseudorotationally locked sugar analogues based on bicyclo[3.1.0]-hexane templates were placed in DNA duplexes as abasic target sites in the M. HhaI recognition sequence. The binding affinity of the enzyme increases when the abasic site is constrained to the South conformation and decreases when it is constrained to the North conformation. A structural understanding of these differences is provided.  相似文献   

17.
Nulf CJ  Corey D 《Nucleic acids research》2004,32(13):3792-3798
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5′-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose–response inhibition of translation with EC50 values of 50–150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV.  相似文献   

18.
In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated. It is concluded that the indole ring of the tryptophan residue probably stacks on top of the 3'-terminal guanine base of both duplexes, but not on the nucleic acid bases next to the apurinic (AP) site.  相似文献   

19.
A series of oligomers of cytidylic acid were prepared and partially (6-9% of the bases) thiolated in the 5 positions. The modified oligomers showed increasing inhibition with increasing chain length of both the DNA polymerase-alpha from regenerating rat liver and the DNA-dependent RNA polymerase of E. coli, but the minimum chain length for observable inhibitory activity was 5 nucleotide units for the DNA polymerase-alpha and 16 units for the RNA polymerase.  相似文献   

20.
Archaeal family B DNA polymerases contain a specialised pocket that binds tightly to template-strand uracil, causing the stalling of DNA replication. The mechanism of this unique "template-strand proof-reading" has been studied using equilibrium binding measurements, DNA footprinting, van't Hoff analysis and calorimetry. Binding assays have shown that the polymerase preferentially binds to uracil in single as opposed to double-stranded DNA. Tightest binding is observed using primer-templates that contain uracil four bases in front of the primer-template junction, corresponding to the observed stalling position. Ethylation interference analysis of primer-templates shows that the two phosphates, immediately flanking the uracil (NpUpN), are important for binding; contacts are also made to phosphates in the primer-strand. Microcalorimetry and van't Hoff analysis have given a fuller understanding of the thermodynamic parameters involved in uracil recognition. All the results are consistent with a "read-ahead" mechanism, in which the replicating polymerase scans the template, ahead of the replication fork, for the presence of uracil and halts polymerisation on detecting this base. Post-stalling events, serving to eliminate uracil, await full elucidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号