首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Liu B  Li P  Li X  Liu C  Cao S  Chu C  Cao X 《Plant physiology》2005,139(1):296-305
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.  相似文献   

5.
《Comptes rendus biologies》2014,337(11):635-641
A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions.  相似文献   

6.
Identifying and exploiting grain yield genes in rice   总被引:7,自引:0,他引:7  
Improved grain yield has been a major focus of crop breeding programs around the world. With the accomplishments of the Rice Genome Project, genes regulating several agronomically important traits related to grain yield, such as tiller number, grain number, grain size, and plant height, have recently been identified. Although these findings have not been enough to fully characterize the mechanisms that regulate each trait, these genes and knowledge of the molecular mechanisms involved provide a set of tools that can be combined to achieve tailor-made breeding suitable for various programs aimed at higher grain yield.  相似文献   

7.
<正>Grain shape is a key breeding target that influences both grain yield and appearance quality in rice. Breeding for long-slender grains is an effective strategy to improve grain quality (Jain et al., 2004;Wang et al., 2012, 2015a). In the past two decades, several quantitative trait loci (QTLs) responsible for grain size and shape have been identified, including GS3 (Fan et al., 2006), GS5 (Li et al., 2011),  相似文献   

8.
Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm.  相似文献   

9.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.  相似文献   

10.
Current research on the effect of increased UV-B radiation on crop production has been limited to exposing plants to improbable UV-B dose or growth condition. The objective of this study was to test the effects of short-term modulated increased UV-B radiation on maize (Zea mays L.) growth, grain yield, and quality under field conditions for three years. A modulated irradiance system was used to maintain UV-B radiation at 30% above the ambient level and was applied daily between the elongation and silking stages of maize. The result indicated that increased UV-B radiation adversely affected maize growth and yield, especially on plant height when UV-B was enhanced at the elongation stage and on yield when UV-B was enhanced near the silking stage. Yield reduction that induced by enhanced UV-B radiation was associated with reductions in number of kernels per row and kernel mass. Protein content of grains was increased with enhanced UV-B radiation, but oil and starch contents were not affected. This study confirmed the sensitivity of maize to increased UV-B radiation under the field condition, and contributed to understand the full negative and positive effects of increased UV-B radiation on crop production.  相似文献   

11.
灌浆结实期温度对水稻产量和品质形成的影响   总被引:14,自引:0,他引:14  
灌浆结实期是水稻产量和品质形成的关键时期,该时期温度对水稻籽粒灌浆具有显著的影响.随着全球气候趋暖以及极端天气频发,温度胁迫下籽粒灌浆和稻米品质的响应特征及其生理生化机制是目前稻作研究的热点之一.本文以灌浆结实期温度为切入点,对水稻产量和品质形成的适宜温度与温度影响时段以及温度胁迫下水稻生理生化特征等方面进行了梳理.灌浆初期(齐穗后20 d)是温度影响水稻产量和品质形成的关键时期,适温(21 ~ 26℃)有利于水稻灌浆和淀粉的充实与沉积,过高或过低温度均不利于提高水稻产量和品质.温度胁迫下,水稻生理生化活性下降,光合功能降低,抗逆性减弱,干物质积累和运转受抑,从而造成产量下降及品质变劣.这些可能为水稻优质高产栽培和灌浆结实期温度研究提供一定的参考.  相似文献   

12.
<正>Widespread use of inorganic nitrogen fertilizers has increased yields of many grains, including rice (Oryza sativa L.); however, fertilizers are costly for farmers and cause serious environmental problems, such as soil acidification and water eutrophication (Guo et al., 2010, 2021; Liu et al., 2021). Improving nitrogen use efficiency(NUE) in rice offers a practical way to enhance grain yield and alleviate the environmental problems caused by overuse of nitrogen fertilizer. Identifying a...  相似文献   

13.
Genetic analysis of rice grain quality   总被引:67,自引:0,他引:67  
 The inheritance of grain quality is more complicated than that of other agronomic traits in cereals due to epistasis, maternal and cytoplasmic effects, and the triploid nature of endosperm. In the present study, an established rice DH population derived from anther culture of an indica/japonica hybrid was used for genetic analysis of rice grain quality. A total of five parameters, amylose content (AC), alkali-spreading score (ASS), gel consistency (GC), percentage of grain with a white core (PGWC) and the square of the white core (SWC), were estimated for the DH lines and the parent varieties. For each parent, the value of each parameter was relatively stable in three locations, Beijing, Hangzhou and Chengdu, while the differences between the parents were significant for all five parameters. AC showed a bimodal distribution, and the distribution of ASS was skewed toward the value of JX17, while the other three parameters displayed continuous distributions among the DH lines with partially transgressive segregations. For AC, a minor and a major gene were found on chromosomes 5 and 6 respectively. The major gene, which should be an allele of wx, explained 91.9% of the total variation. For GC, two QTLs were identified on chromosomes 2 and 7 respectively. For ASS, a minor and a major gene were both located on chromosome 6. The major gene should be the same locus as the alkali degeneration gene (alk). Genetic linkage between alk and wx was found in QTL mapping. For PGWC, two QTLs were located on chromosomes 8 and 12. Only a minor QTL was found for SWC on chromosome 3. The results and the molecular markers presented here may be useful in rice breeding for grain quality improvement. Received: 24 April 1998 / Accepted: 13 August 1998  相似文献   

14.
正Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.Over the past 50 years,the  相似文献   

15.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

16.
17.
Photosynthesis, grain yield, and nitrogen utilization in rice and wheat   总被引:8,自引:0,他引:8  
Makino A 《Plant physiology》2011,155(1):125-129
  相似文献   

18.
The effect of Leptocorisa oratorius (F.) on the yield, grain quality, and seed viability of four rice, Oryza sativa L., lines was studied. Three of the lines, C2, IR64, and PSBRc20, are grown in the Philippines. The fourth, IR72164-201-1 is an unreleased experimental line of an O. sativa japonica x O. sativa indica cross. Each line was exposed to four infestation densities for 21 d. L. oratorius feeding produced unfilled and partially filled grains, resulting in a negative correlation of yield to rice bug density. When filled grains were sown, germination rates were negatively correlated with rice bug densities. The percentage of discolored grains was positively correlated with L. oratorius density on all rice lines. At the same infestation rates, PSBRc20 and IR64 had higher yields, less damaged grain, and higher germination rates than IR72164-201-1 and C2, suggesting host plant tolerance to rice bug feeding. The economic injury levels (EILs) currently used for rice bug management are based solely on yield loss estimates. The results of this study suggest that EIL for rice bugs should be revised to take into account reductions in grain quality and seed germination rates in addition to yield loss.  相似文献   

19.
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.  相似文献   

20.
The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low‐affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day‐night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down‐regulation of OsPTR9 in a T‐DNA insertion line (osptr9) and in OsPTR9‐RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号