首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Letter describes an efficient approach by integrating virtual screening with bioassay technology for finding small organic inhibitors targeting β-secretase (BACE-1). Fifteen hits with inhibitory potencies ranging from 2.8 to 118 μM (IC50) against β-secretase were successfully identified. Compound 12 with IC50 of 2.8 μM is the most potent hit against BACE-1. Docking simulation from gold 3.0 suggests putative binding mode of 12 in BACE-1 and potential key pharmacophore groups for further designing of non-peptide compounds as more powerful inhibitors against BACE-1.  相似文献   

2.
Aiming at identifying new scaffolds for BACE-1 inhibition devoid of the pharmacokinetic drawbacks of peptide-like structures, we investigated a series of novel peptidomimetics based on a 1,4-benzodiazepine (BDZ) core 1ah and their seco-analogues 2ad. We herein discuss synthesis, molecular modeling and in vitro studies which, starting from 1a, led to the seco-analogues (R)-2c and (S)-2d endowed with BACE-1 inhibition properties in the micromolar range both on the isolated enzyme and in cellular studies. These data can encourage to pursue these analogues as hits for the development of a new series of BACE-1 inhibitors active on whole-cells.  相似文献   

3.
New amino-1,4-oxazine derived BACE-1 inhibitors were explored and various synthetic routes developed. The binding mode of the inhibitors was elucidated by co-crystallization of 4 with BACE-1 and X-ray analysis. Subsequent optimization led to inhibitors with low double digit nanomolar activity in a biochemical and single digit nanomolar potency in a cellular assays. To assess the inhibitors for their permeation properties and potential to cross the blood-brain-barrier a MDR1-MDCK cell model was successfully applied. Compound 8a confirmed the in vitro results by dose-dependently reducing Aβ levels in mice in an acute treatment regimen.  相似文献   

4.
Nowadays identification of novel non-peptide β-secretase (BACE-1, hereinafter) inhibitors with low cytotoxicity and good blood–brain barrier (BBB) property holds common interest of drug discovery for Alzheimer’s disease. Twenty SPECS compounds were tested in BACE-1 FRET assays and methylthiazoletetrazolium (MTT) cytotoxicity experiment. Two compounds: 2 and 15 demonstrated IC50 values of 0.53 and 9.4 μM. In addition, 2 showed least toxic effect to the neuroblastoma cells. The results from both in silico and in vitro studies provided new pharmacophoric entities for chemical synthesis and optimization on the current discovered BACE-1 small molecule inhibitors.  相似文献   

5.
Alzheimer disease (AD) is a neuronal dementia for which no treatment has been consolidated yet. Major pathologic hallmark of AD is the aggregated extracellular amyloid-β plaques in the brains of disease sufferers. Aβ-peptide is a major component of amyloid plaques and is produced from amyloid precursor protein (APP) via the proteolysis action. An aspartyl protease known as β-site amyloid precursor protein cleaving enzyme (BACE-1) is responsible for this proteolytic action. Distinctive role of BACE-1 in AD pathogenesis has made it a validated target to develop anti-Alzheimer agents. Our structure-based virtual screening method led to the synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridine BACE-1 inhibitors (6a6p; in vitro hits). Molecular docking and DFT-based ab initio studies using B3LYP functional in association with triple-ζ basis set (TZV) proposed binding mode and binding energies of ligands in the active site of the receptor. In vitro BACE-1 inhibitory activities were determined by enzymatic fluorescence resonance energy transfer (FRET) assay. Most of the synthesized dihydropyridine scaffolds were active against BACE-1 while 6d, 6k, 6n and 6a were found to be the most potent molecules with IC50 values of 4.21, 4.27, 4.66 and 6.78 μM, respectively. Superior BACE-1 inhibitory activities were observed for dihydropyridine derivatives containing fused/nonfused thiazole containing groups, possibly attributing to the additional interactions with S2–S3 subpocket residues. Relatively reliable correlation between calculated binding energies and experimental BACE-1 inhibitory activities was achieved (R2 = 0.51). Moreover, compounds 6d, 6k, 6n and 6a exhibited relatively no calcium channel blocking activity with regard to nifedipine suggesting them as appropriate candidates for further modification(s) to BACE-1 inhibitory scaffolds.  相似文献   

6.
The macrocyclic peptidic BACE-1 inhibitors 2ac show moderate enzymatic and cellular activity. By exchange of the hydroxyethylene- to ethanolamine-transition state mimetic the peptidic character was reduced, providing the highly potent and selective inhibitor 3. Variation of the P′ moiety resulted in the macrocyclic inhibitor 14. Both macrocycles show inhibition of BACE-1 in the brain of APP51/16 transgenic mice, 3 (NB-544) after intravenous and 14 (NB-533) after oral application.  相似文献   

7.
Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer’s disease. We have recently disclosed a series of transition-state mimetic BACE-1 inhibitors showing nanomolar potency in cell-based assays. Amongst them, GSK188909 (compound 2) had favorable pharmacokinetics and was the first orally bioavailable inhibitor reported to demonstrate brain amyloid lowering in an animal model. In this Letter, we describe the reasons that led us to favor a second generation of inhibitors for further in vivo studies.  相似文献   

8.
The identification of a series of sulfonyl-amino-acetamides as BACE-1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease is reported. The derivatives were designed based on the docking simulation study, synthesized and assessed for BACE-1 inhibition in vitro. The designed ligands revealed desired binding interactions with the catalytic aspartate dyad and occupance of S1 and S2′ active site regions. These in silico results correlated well with in vitro activity. Out of 33 compounds synthesized, 12 compounds showed significant inhibition at 10 μM concentration. The most active compound 2.17S had IC50 of 7.90 μM against BACE-1, which was concomitant with results of in silico docking study.  相似文献   

9.
Herein we describe further evolution of hydroxyethylamine inhibitors of BACE-1 with enhanced permeability characteristics necessary for CNS penetration. Variation at the P2′ position of the inhibitor with more polar substituents led to compounds 19 and 32, which retained the potency of more lipophilic analog 1 but with much higher observed passive permeability in MDCK cellular assay.  相似文献   

10.
Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on ??-phenylnorstatine, ??-benzylnorstatine, iso-serine, and ??-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC50 = 0.19 ??M) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.  相似文献   

11.
Using structure-guided design, hydroxyethylamine BACE-1 inhibitors were optimized to nanomolar Aβ cellular inhibition with selectivity against cathepsin-D. X-ray crystallography illuminated the S1′ residues critical to this effort, which culminated in compounds 56 and 57 that exhibited potency and selectivity but poor permeability and high P-gp efflux.  相似文献   

12.
This Letter describes the one pot synthesis of tertiary carbinamine 3 and related analogs of brain penetrant BACE-1 inhibitors via the alkylation of the Schiff base intermediate 2. The methodology developed for this study provided a convenient and rapid means to explore the P1 region of these types of inhibitors, where the P1 group is installed in the final step using a one-pot two-step protocol. Further SAR studies led to the identification of 10 which is twofold more potent in vitro as compared to the lead compound. This inhibitor was characterized in a cisterna magna ported rhesus monkey model, where significant lowering of CSF Aβ40 was observed.  相似文献   

13.
Multi-target-directed ligands (MTDLs) centered on β-secretase 1 (BACE-1) inhibition are emerging as innovative therapeutics in addressing the complexity of neurodegenerative diseases. A new series of donepezil analogues was designed, synthesized and evaluated as MTDLs against neurodegenerative diseases. Profiling of donepezil, a potent acetylcholinesterase (hAChE) inhibitor, into BACE-1 inhibition was achieved through introduction of backbone amide linkers to the designed compounds which are capable of hydrogen-bonding with BACE-1 catalytic site. In vitro assays and molecular modeling studies revealed the dual mode of action of compounds 46 against hAChE and BACE-1. Notably, compound 4 displayed potent hAChE inhibition (IC50 value of 4.11 nM) and BACE-1 inhibition (IC50 value of 18.3 nM) in comparison to donepezil (IC50 values of 6.21 and 194 nM against hAChE and BACE-1, respectively). Moreover, 4 revealed potential metal chelating property, low toxicity on SH-SY5Y neuroblastoma cells and ability to cross the blood–brain barrier (BBB) in PAMPA-BBB assay which renders 4 a potential lead for further optimization of novel small ligands for the treatment of Alzheimer's disease.  相似文献   

14.
A similarity search on the structural analogs of an inhibitor of BACE-1 with IC50 2.8 μM, which contained a P1 benzothiazole group together with a triazine ring linked by a secondary amine group, was described in this Letter and some more potent inhibitors against BACE-1 were identified. The most potent compound 5 (IC50 = 0.12 μM) increases the inhibitory potency by 24 folds. Our results suggest that a pyrrolidinyl side group at the P3′ and P4′ of the inhibitors are favored for strong inhibition and a small aromatic group at the P4 position is also essential to the potency.  相似文献   

15.
The hydroxyethylene octapeptide inhibitor OM99-2 served as starting point to create the tripeptide inhibitor 1 and its analogues 2a and b. An X-ray co-crystal structure of 1 with BACE-1 allowed the design and syntheses of a series of macrocyclic analogues 3ah covalently linking the P1 and P3 side-chains. These inhibitors show improved enzymatic potency over their open-chain analogue. Inhibitor 3h also shows activity in a cellular system.  相似文献   

16.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

17.
Two β-secreatase (BACE1) inhibitors from natural products (cinnamic acid and flavone) were linked to furnish potent, cell permeable BACE1 inhibitors with noncompetitive mode of inhibition, with the assistance of saturated transfer difference (STD)-NMR technique. Some of these conjugates also exhibited selective BACE1 inhibition over other aspartyl proteases such as BACE-2 and renin, as well as poor cytotoxicity. Taken together, conjugates 4 represent a new series of BACE inhibitors warrants further investigation for their potential in Alzheimier’s disease therapy.  相似文献   

18.
Here, we describe amentoflavone-type biflavonoids, which were isolated from natural sources and were found to inhibit β-secretase (BACE-1). The structure–activity relationship was studied, and compounds 18, 10, 17, and 18 showed BACE-1 inhibitory activity. Among these compounds, 2,3-dihydroamentoflavone 17 and 2,3-dihydro-6-methylginkgetin 18 exhibited potent inhibitory effects with IC50 values of 0.75 and 0.35 μM, respectively.  相似文献   

19.
A new series of structurally rigid donepezil analogues was designed, synthesized and evaluated as potential multi-target-directed ligands (MTDLs) against neurodegenerative diseases. The investigated compounds 1013 displayed dual AChE and BACE-1 inhibitory activities in comparison to donepezil, the FDA-approved drug. The hybrid compound 13 bearing 2-aminoquinoline scaffold exhibited potent AChE inhibition (IC50 value of 14.7?nM) and BACE-1 inhibition (IC50 value of 13.1?nM). Molecular modeling studies were employed to reveal potential dual binding mode of 13 to AChE and BACE-1. The effect of the investigated compounds on the viability of SH-SY5Y neuroblastoma cells and their ability to cross the blood-brain barrier (BBB) in PAMPA-BBB assay were further studied.  相似文献   

20.
In this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αβ by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30 mpk BID for 2.5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号