首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles (3ak and 4au) were designed, synthesized, and evaluated for their inhibitory efficacy towards the two hMAO isoforms. Most of the derivatives were found to be potent and selective hMAO-B inhibitors. In particular, derivative 3g showed greater hMAO-B affinity than selective inhibitor selegiline coupled with high selectivity index (SI = 145). The most selective hMAO-B inhibitor was the 3-methyl analogue 3f with an SI higher than 909.  相似文献   

2.
Various substituted 4,6-diarylpyrimidin-2-amine (4), 4,6-diaryl-2-(heteroaryl)pyrimidine (6) and 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (7) derivatives were synthesized in good yields using simple methodology. The synthesized compounds (47) were evaluated for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain. Compounds 4a, 6b, 7b, and 7c exhibited significant anti-tubercular activity at MIC values 25, 25, 12.5 and 12.5 μM concentration. In vitro cytotoxicity data using non cancerous hepatic monocytes (THP-1) cells indicated that most active compounds 7b and 7c were safe as their MIC values were much lower than their cytotoxic values.  相似文献   

3.
Two series of 1-substituted carbamoyl and thiocarbomoyl derivatives were prepared by either treating the corresponding pyrazole with the appropriate isocyanate and isothiocyanate respectively, or alternatively by condensing the appropriate diketone with the proper substituted semicarbazide or thiosemicarbazide. The structures of the prepared compounds were fully determined by analytical and spectral methods. Preliminary biological screening of the prepared compounds revealed significant antibacterial and cytotoxic activities for some compounds. Compounds 4a2 and 4a3 were found to be the most active against the human colon carcinoma HT29 (11.8 and 7.5?μg/mL, respectively) and human breast cancer MCF 7 (3.4 and 2.6?μg/mL, respectively) cell lines. The structure–activity relationship (SAR) and in silico drug relevant properties (HBD, HBA, tPSA, cLog P, molecular weight, % ABS, drug-likeness and drug score) further confirmed that the compounds are potential lead compounds for future drug discovery study.  相似文献   

4.
Xanthine oxidase is a complex molybdoflavoprotein that catalyses the hydroxylation of xanthine to uric acid. Fifty three analogues of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles were rationally designed and synthesized and evaluated for in vitro xanthine oxidase inhibitory activity for the first time. Some notions about structure activity relationships are presented. Six compounds 41, 42, 44, 46, 55 and 59 were found to be most active against XO with IC(50) ranging from 5.3 μM to 15.2 μM. The compound 59 emerged as the most potent XO inhibitor (IC(50)=5.3 μM). Some of the important interactions of 59 with the amino acid residues of active site of XO have been figured out by molecular modeling.  相似文献   

5.
3,5-diaryl-4,5-dihydropyrazoles were discovered to be potent KSP inhibitors with excellent in vivo potency. These enzyme inhibitors possess desirable physical properties that can be readily modified by incorporation of a weakly basic amine. Careful adjustment of amine basicity was essential for preserving cellular potency in a multidrug resistant cell line while maintaining good aqueous solubility.  相似文献   

6.
1-(3,5-Diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives were synthesized and tested for their in vitro antifungal and antimycobacterial activities. These imidazole derivatives showed an excellent antifungal activity against a clinical strain of Candida albicans and an interesting antitubercular activity against Mycobacterium tuberculosis H(37)Rv reference strain.  相似文献   

7.
3,5-Diaryl-4,5-dihydroisoxazoles were synthesized and evaluated as monoamine oxidase (MAO) enzyme inhibitors and iron chelators. All compounds exhibited selective inhibitory activity towards the B isoform of MAO in the nanomolar concentration range. The best performing compound was preliminarily evaluated for its ability to bind iron II and III cations, indicating that neither iron II nor iron III is coordinated. The best compounds racemic mixtures were separated and single enantiomers inhibitory activity evaluated. Furthermore, none of the synthesised compounds exhibited activity towards MAO A. Overall, these data support our hypothesis that 3,5-diaryl-4,5-dihydroisoxazoles are promising scaffolds for the design of neuroprotective agents.  相似文献   

8.
A series of 4,5-dihydro-1,5-diaryl-1H-pyrazole-3-substituted-heteroazoles were designed and synthesized in order to obtain new compounds with potential anti-inflammatory activity. The title compounds were screened for in vivo anti-inflammatory activity by using Carrageenan induced rat paw edema method. Diclofenac sodium was used as a standard drug for comparison. Out of the 30 compounds tested, compound 19a, 19b, 25a, 25b exhibited significant anti-inflammatory activity. Selected compounds were also screened for in vitro COX-2 inhibition assay and analgesic activity in the acetic acid induced writhing model.  相似文献   

9.
Two new series of biphenyls, analogs of aglycone of natural product fortuneanoside E, were prepared using Suzuki–Miyaura cross-coupling and selective magnesium iodide demethylation/debenzylation, and their mushroom tyrosinase inhibitory activity was evaluated. Most of the 4-hydroxy-3,5-dimethoxyphenyl biphenyl compounds (series II, 20–36) were in general more active than 3,4,5-trimethoxyphenyl biphenyl compounds (series I, 1–19). Structure–activity relationships study showed that monosaccharide substituents, such as glucose, were not necessary and the presence of 4-hydroxy-3,5-dimethoxyphenyl moiety was crucial for inhibitory activity. Among the compounds synthesised, compound 21 (IC50 = 0.02 mM) was found to be the most active one, which exhibited an activity that was 7 times higher than that of fortuneanoside E (IC50 = 0.14 mM) and 10 times higher than that of arbutin (IC50 = 0.21 mM), known as potent tyrosinase inhibitors. The inhibition kinetics analyzed by Lineweaver–Burk plots revealed that compound 21 was a competitive inhibitor (Ki = 0.015 mM).  相似文献   

10.
Optimization of high-throughput screening (HTS) hits resulted in the discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of KSP. Dihydropyrazole 15 is a potent, cell-active KSP inhibitor that induces apoptosis and generates aberrant mitotic spindles in human ovarian carcinoma cells at low nanomolar concentrations. X-ray crystallographic evidence is presented which demonstrates that these inhibitors bind in an allosteric pocket of KSP distant from the nucleotide and microtubule binding sites.  相似文献   

11.
A new type of 4,5-diaryl-4H-1,2,4-triazole, possessing C-3 thio and alkylthio (SH, SMe or SEt) substituents, was designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 3-ethylthio-5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-4H-1,2,4-triazole (10d), exhibited a high in vitro selectivity (COX-1 IC50=20.5 nM; COX-2 IC50=1.8 nM; SI=11.39) relative to the reference drug celecoxib (COX-1 IC50=3.7 nM; COX-2 IC50=2.2 nM; SI=1.68) and also showed good anti-inflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay.  相似文献   

12.
New 4,6-diaryl-4,5-dihydro-2-phenyl-2H-indazol-3-ols 25-32 were designed, synthesized and in vitro microbially evaluated using clinically isolated bacterial strains viz Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, Shigella felxneri and fungal strains viz Aspergillus flavus, Mucor, Rhizopus and Microsporum gypsuem. Results of this study showed that the nature of the substituents on the phenyl rings viz., methyl, methoxy, chloro, nitro as well as the bromo functions at the meta and para positions of the aryl moieties determined the nature and extent of the activity of the fused indazolonol compounds 25-32.  相似文献   

13.
New 4,6-diaryl-4,5-dihydro-2-phenyl-2H-indazol-3-ols 25-32 were designed, synthesized and in vitro microbially evaluated using clinically isolated bacterial strains viz Staphylococcus aureus, beta-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, Shigella felxneri and fungal strains viz Aspergillus flavus, Mucor, Rhizopus and Microsporum gypsuem. Results of this study showed that the nature of the substituents on the phenyl rings viz., methyl, methoxy, chloro, nitro as well as the bromo functions at the meta and para positions of the aryl moieties determined the nature and extent of the activity of the fused indazolonol compounds 25-32.  相似文献   

14.
A study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions. Small alkyl group substitution at the 5-position provided inhibitors equipotent with but possessing improved solubility.  相似文献   

15.
Inspired by previous efforts in the pyrazolobenzoxazine class of KSP inhibitors, the design and synthesis of 1,4-diaryl-4,5-dihydropyrazole inhibitors of KSP are described. Crystallographic evidence of binding mode and in vivo potency data is also highlighted.  相似文献   

16.
The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44μM, more potent than kojic acid).  相似文献   

17.
Abstract

A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96?µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

18.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

19.
A series of novel sulfone substituted 4,5-diarylthiazoles have been synthesized and evaluated for their inhibition of the two isoforms of human cyclooxygenase (COX-1 and COX-2). This series displays exceptionally selective COX-2 inhibition.  相似文献   

20.
The tyrosinase inhibitory potential of seventeen synthesized oxazolone derivatives has been evaluated and their structure-activity relationships developed in the present work. All the synthesized derivatives, 3-19, demonstrated excellent in vitro tyrosinase inhibitory properties having IC50 values in the range of 1.23+/-0.37-17.73+/-2.69 microM, whereas standard inhibitors l-mimosine and kojic acid have IC50 values 3.68+/-0.02 and 16.67+/-0.52 microM,, respectively. Compounds 4-8 having IC50 values 3.11+/-0.95, 3.51+/-0.25, 3.23+/-0.66, 1.23 +/- 0.37, and 2.15+/-0.75, respectively, were found to be very active members of the series, even better than both the standard inhibitors. However, compounds 3, 9-11, 13, 14, 16, 17, and 19 were found to be better than kojic acid but not l-mimosine. (2-Methyl-4-[E,2Z)-3-phenyl-2-propenyliden]-1,3-oxazol-5(4H)-one (7) bearing a cinnamyol residue at C-4 of oxazolone moiety and an IC50 = 1.23+/-0.37 microM was found to be the most active one among all tested compounds. These studies reveal that the substitution of functional group (s) at C-4 and C-2 positions plays a vital role in the activity of this series of compounds. It is concluded that compound 7 may act as a potential lead molecule to develop new drugs for the treatment of tyrosinase based disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号