共查询到20条相似文献,搜索用时 15 毫秒
1.
《Bioorganic & medicinal chemistry》2014,22(21):5838-5846
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents. 相似文献
2.
3.
David Y.W. Lee Jing Liu Shuzhen Zhang Peng Huang Lee-Yuan Liu-Chen 《Bioorganic & medicinal chemistry letters》2017,27(6):1437-1440
Cocaine addiction remains a serious challenge for clinical and medical research because there is no effective pharmacological treatment. l-THP, a natural product isolated from Corydalis yanhusuo W.T. Wang, is one of the most frequently used traditional herbs to treat drug addiction in China. Our laboratory first reported that its demethylated metabolites l-ICP, l-CD, and l-CP had high affinity at dopamine D1, D2, and D5 receptors. Here we report the chemical synthesis of these metabolites and other derivatives and their binding affinities at dopamine receptors. The synthesis of these bioactive metabolites will allow further in vivo study of their potential in treating cocaine addiction. 相似文献
4.
E J Homan E Kroodsma S Copinga L Unelius N Mohell H V Wikstr?m C J Grol 《Bioorganic & medicinal chemistry》1999,7(6):1111-1121
Several structural analogues of 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 1), a representative of a series of 2-aminotetralin-derived benzamides with potential atypical antipsychotic properties, were synthesized and evaluated for their ability to bind to dopamine D2A, D3, and serotonin 5-HT1A receptors in vitro. The structure affinity relationships revealed that the aromatic ring of the benzamide moiety of 1 contributes to the high affinities for all three receptor subtypes. Furthermore, 1 may interact with the dopamine D2 and D3 receptors through hydrogen bond formation with its carbonyl group. Investigation of the role of the amide hydrogen atom by amide N-alkylation was not conclusive, since conformational aspects may be responsible for the decreased dopaminergic affinities of the N'-alkylated analogues of 1. The effects of the amide modifications on the serotonin 5-HT1A receptor affinity were less pronounced, suggesting that the benzamidoethyl side-chain of 1 as a whole enhances the affinity for this receptor subtype probably through hydrophobic interactions with an accessory binding site. The structural requirements for the substituents at the basic nitrogen atom supported the hypothesis that the 2-aminotetralin moieties of the 2-aminotetralin-derived substituted benzamides may share the same binding sites as the 2-(N,N-di-n-propylamino)tetralins. 相似文献
5.
Suk Youn Kang Eun-Jung Park Woo-Kyu Park Hyun Jung Kim Daeyoung Jeong Myung Eun Jung Kwang-Seop Song Suk Ho Lee Hee Jeong Seo Min Ju Kim MinWoo Lee Ho-Kyun Han Eun-Jung Son Ae Nim Pae Jeongmin Kim Jinhwa Lee 《Bioorganic & medicinal chemistry letters》2010,20(5):1705-1711
Arylpiperzine-containing pyrrole 3-carboxamide derivatives were synthesized and evaluated as novel antidepressant compounds. The various analogues were efficiently prepared and bio-assayed for binding to 5-HT2A, 5-HT2C receptor, and 5-HT transporter. Based on their in vitro and in vivo activities as well as selectivity over other neurotransmitter receptors and PK profiles, 33 and 34 were identified as lead compounds. Consequently, this pyrrole series of compounds appears to be promising enough to warrant further investigation. 相似文献
6.
López-Rodríguez ML Benhamú B Morcillo MJ Tejada I Avila D Marco I Schiapparelli L Frechilla D Del Río J 《Bioorganic & medicinal chemistry letters》2003,13(19):3177-3180
A series of new benzimidazole-arylpiperazine derivatives III were designed, synthesized and evaluated for binding affinity at serotoninergic 5-HT(1A) and 5-HT(3) receptors. Compound IIIc was identified as a novel mixed 5-HT(1A)/5-HT(3) ligand with high affinity for both serotonin receptors and excellent selectivity over alpha(1)-adrenergic and dopamine D(2) receptors. This compound was characterized as a partial agonist at 5-HT(1A)Rs and a 5-HT(3)R antagonist, and was effective in preventing the cognitive deficits induced by muscarinic receptor blockade in a passive avoidance learning test. 相似文献
7.
Caliendo G Fiorino F Grieco P Perissutti E Santagada V Severino B Bruni G Romeo MR 《Bioorganic & medicinal chemistry》2000,8(3):533-538
A series of novel 1,2,3-benzotriazin-4-one derivatives was prepared and evaluated as ligands for 5-HT receptors. Radioligand binding assays proved that the majority of the novel compounds behaved as good to excellent ligands at the 5-HT1A receptor, some of which were selective with respect 5-HT2A and 5-HT2C receptors. Six analogues (1a, 2a, 2b, 2c, 2e and 2i) were selected and further evaluated for their binding affinities on D1, D2 dopaminergic and alpha1-, alpha2-adrenergic receptors. A o-OCH3 derivative (2e) bound at 5-HT1A sites with subnanomolar affinity (IC50 = 0.059 nM) and shows high selectivity over all considered receptors and may offer a new lead for the development of therapeutically efficacious agents. 相似文献
8.
López-Rodríguez ML Benhamú B Morcillo MJ Tejada I Avila D Marco I Schiapparelli L Frechilla D Del Río J 《Bioorganic & medicinal chemistry》2004,12(19):5181-5191
A series of new mixed benzimidazole-arylpiperazine derivatives were designed by incorporating in general structure III the pharmacophoric elements of 5-HT(1A) and 5-HT(3) receptors. Compounds 1-11 were synthesized and evaluated for binding affinity at both serotoninergic receptors, all of them exhibiting high 5-HT(3)R affinity (K(i)=10-62nM), and derivatives with an o-alkoxy group in the arylpiperazine ring showing nanomolar affinity for the 5-HT(1A)R (K(i)=18-150nM). Additionally, all the synthesized compounds were selective over alpha(1)-adrenergic and dopamine D(2) receptors (K(i)>1000-10,000nM). Compound 3 was selected for further pharmacological characterization due to its interesting binding profile as mixed 5-HT(1A)/5-HT(3) ligand with high affinity for both receptors (5-HT(1A): K(i)=18.0nM, 5-HT(3): K(i)=27.2nM). In vitro and in vivo findings suggest that this compound acts as a partial agonist at 5-HT(1A)Rs and as a 5-HT(3)R antagonist. This novel mixed 5-HT(1A)/5-HT(3) ligand was also effective in preventing the cognitive deficits induced by muscarinic receptor blockade in a passive avoidance learning test, suggesting a potential interest in the treatment of cognitive dysfunction. 相似文献
9.
Zajdel P Marciniec K Maślankiewicz A Satała G Duszyńska B Bojarski AJ Partyka A Jastrzębska-Więsek M Wróbel D Wesołowska A Pawłowski M 《Bioorganic & medicinal chemistry》2012,20(4):1545-1556
Two series of arylpiperazinyl-alkyl quinoline-, isoquinoline-, naphthalene-sulfonamides with flexible (13-26) and semi-rigid (33-36) alkylene spacer were synthesized and evaluated for 5-HT(1A), 5-HT(2A), 5-HT(6), 5-HT(7) and selected compounds for D(2), D(3), D(4) receptors. The compounds with a mixed 5-HT and D receptors profile 16 (N-{4-[4-(3-chlorophenyl)-piperazin-1-yl]-butyl}-3-quinolinesulfonamide) and 36 (4-(4-{2-[4-(4-chloro-phenyl)-piperazin-1-yl]-ethyl}-piperidine-1-sulfonyl)-isoquinoline), displaying antagonistic activity at 5-HT(7), 5-HT(2A), D(2) postsynaptic sites, produced antidepressant-like effects in the forced swim test in mice and showed significant anxiolytic activity in the plus-maze test in rats. The lead compound 36, a multi-receptor 5-HT(2A)/5-HT(7)/D(2)/D(3)/D(4) agent, also displayed significant antipsychotic properties in the MK-801-induced hyperlocomotor activity in mice. 相似文献
10.
Kim JY Kim D Kang SY Park WK Kim HJ Jung ME Son EJ Pae AN Kim J Lee J 《Bioorganic & medicinal chemistry letters》2010,20(22):6439-6442
Pyrimidine usually has good pharmacokinetic properties as a drug substance and considerable efforts have been devoted to develop pyrimidine derivatives into drug candidates. Arylpiperazine-containing pyrimidine 4-carboxamide derivatives were synthesized and evaluated for binding to serotonin receptors and transporter. Pyrimidine derivatives showed good antidepressant activity in FST (forced swimming test) animal model and also displayed no appreciable inhibitory activity against hERG channel blocking assay. Herein SAR studies of pyrimidine derivatives targeting serotonin receptors and transporter will be disclosed. 相似文献
11.
Iloperidone has demonstrated an interesting monoamine receptor profile in radioligand binding studies, with nanomolar affinity for certain noradrenaline, dopamine, and serotonin receptors. In this study, the agonist/antagonist activity of iloperidone was determined in cell lines expressing recombinant human D(2A), D(3), alpha(2C), 5-HT(1A), or 5-HT(6) receptors. With the exception of 5-HT(6) receptors, these receptors are negatively coupled to cyclase. Thus, after stimulation with forskolin, the agonists dopamine (at D(2A) and D(3)), noradrenaline (at alpha(2C)), or 8-OH-DPAT (at 5-HT(1A)) induced a reduction in cAMP accumulation. Conversely, activation of the 5-HT(6) receptor by 5-HT led to an increase in cAMP accumulation. Iloperidone alone was devoid of significant agonist activity but inhibited the agonist response in all 5 cell lines in a surmountable and concentration-dependent fashion. Iloperidone was most potent at D(3) receptors (pK(B) 8.59 +/- 0.20; n = 6), followed by alpha(2C) (pK(B) 7.83 +/- 0.06; n = 15), 5-HT(1A) (pK(B) 7.69 +/- 0.18; n = 10), D(2A) (pK(B) 7.53 +/- 0.04; n = 11) and 5-HT(6) (pK(B) 7.11 +/- 0.08; n = 11) receptors. 相似文献
12.
Meng CQ Rakhit S Lee DK Kamboj R McCallum KL Mazzocco L Dyne K Slassi A 《Bioorganic & medicinal chemistry letters》2000,10(9):903-905
A series of 5-(2- or 3-thienyl)tryptamine derivatives (9) has been synthesized and shown to be potent and selective 5-HT1D versus 5-HT1B receptor agonists and, therefore, potential treatments for migraine. 相似文献
13.
A small series of N-propylnoraporphin-11-O-yl carboxylic esters with variant ester lengths were synthesized and their binding potencies at dopamine receptors (D(1), D(2)) and serotonin receptors (5-HT(1A), 5-HT(2A)) were evaluated. Monoesters 3a-f showed binding potency of 100 nM or less for the D(2) receptor, and potency of 10-30 nM for the 5-HT(1A) receptor. Butyryl ester 3d was found to be the best compound possessing the highest potency for both receptors, with K(i) values of 55 and 12 nM for D(2) and 5-HT(1A) receptors, respectively. There is no correlation between the binding potency and the length of the monoesters, but the diesters 9 and 10 were inactive for the D(2) receptor. The dual binding profile of these monoesters for the D(2) and 5-HT(1A) receptors may be useful for the treatment of neuropsychiatric disorders. 相似文献
14.
Ghavami A Hunt RA Olsen MA Zhang J Smith DL Kalgaonkar S Rahman Z Young KH 《Cellular signalling》2004,16(6):711-721
Regulator of G protein signaling (RGS) proteins function as GTPase accelerating proteins (GAP) for Galpha subunits, attenuating G-protein-coupled receptor signal transduction. The present study tested the ability of members of different subfamilies of RGS proteins to modulate both G-protein-dependent and -independent signaling in mammalian cells. RGS4, RGS10, and RGSZ1 significantly attenuated Galphai-mediated signaling by 5-HT1A, but not by dopamine D2, receptor-expressing cells. Additionally, RGS4 and RGS10 significantly inhibited forskolin-stimulated cAMP production in both cell lines. In contrast, RGS2, RGS7, and RGSZ1 had no effect on forskolin-stimulated cAMP production in these cells. RGS2 and RGS7 significantly decreased Galphaq-mediated signaling by 5-HT2A receptors, confirming that the RGS4 and RGS10 effects on forskolin-stimulated cAMP production were specific, and not simply due to overexpression. Interestingly, similar expression levels of RGS4 protein resulted in greater inhibition of G-protein-independent cAMP production compared to G-protein-dependent GAP activity. Our results suggest specificity and selectivity of RGS proteins on G-protein-dependent and -independent signaling in mammalian cells. 相似文献
15.
Molecular modeling studies were undertaken in order to elucidate the possible dopamine D2 and serotonin 5-HT1A receptor binding modes of the enantiomers of 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 1). For this purpose, a combination of indirect molecular modeling and direct construction of the seven transmembrane (7TM) domains of the receptors was employed in a stepwise, objective manner. Pharmacophore models and corresponding receptor maps were identified by superimposing selected sets of receptor agonists in their presumed pharmacologically active conformations, while taking the conformational freedom of the ligands into account. The 7TM models were then constructed around the agonist pharmacophore models, by adding the TM domains one-by-one. Initially, the relative positions of TM3, TM4, and TM5 were determined using the three-dimensional structure of bacteriorhodopsin, but subsequently the orientations of all TM domains were adjusted in order to mimic the topology of the TM domains of rhodopsin. The presumed dopamine D2 receptor binding conformations of (S)- and (R)-1 were determined by using the semirigid dopamine D2 receptor antagonist N-benzylpiquindone as a template for superposition. Similarly, the selective serotonin 5-HT1A receptor agonist flesinoxan was employed for identifying the serotonin 5-HT1A receptor binding conformations of the enantiomers of 1. After docking of the presumed pharmacologically active conformations in the 7TM models and subsequent optimization of the binding sites, specific interactions between the ligands and the surrounding amino acid residues, consistent with the structure-activity relationships, were observed. Thus, both enantiomers of 1 bound to the dopamine D2 receptor model in a similar fashion: a reinforced electrostatic interaction was present between the protonated nitrogen atoms and Asp114 in TM3; their carbonyl groups accepted a H-bond from Ser121 in TM3; their amide NH groups acted as H-bond donor to Tyr416 in TM7; and their benzamide phenyl rings were involved in a hydrophobic edge-to-face interaction with Trp386 in TM6. Differences were observed in the orientations of the 2-aminotetralin moieties, which occupied the agonist binding site. Whereas the (S)-enantiomer could form a H-bond between its 5-methoxy substituent and Ser193 in TM5, the (R)-enantiomer could not, which may account for the differences in their intrinsic efficacies at the dopamine D2 receptor. In the serotonin 5-HT1A receptor model, the benzamide phenyl rings of both enantiomers were involved in hydrophobic face-to-face interactions with Phe112 in TM3, while their protonated nitrogen atoms formed a reinforced electrostatic interaction with Asp116 in TM3. Consistent with the structure-affinity relationships of 1, the amide moieties were not involved in specific interactions. Both enantiomers of 1 could form a hydrogen bond between their 5-methoxy substituent and Thr200 in TM5, which may account for their full serotonin 5-HT1A receptor agonist properties. 相似文献
16.
Roxindole, a DA D2 receptor agonist (2-16 mg/kg) produced dose-dependent increase in percentage antinociception. The effect which was blocked by DA D2 antagonist (-)sulpiride (50 mg/kg) and 5-HT1A receptor antagonist (-) pindolol (5 mg/kg). Roxindole (4 and 8 mg/kg) reversed both naloxone (20 mg/kg)-induced hyperalgesia and reserpine (2 mg/kg)-induced hyperalgesia. This reversal was sensitive to blockade by both (-)sulpiride (50 mg/kg) and (-) pindolol (5 mg/kg). The present study suggests that roxindole-induced antinociception is mediated by postsynaptic DA D2 and 5-HT1A receptors. 相似文献
17.
Maria Concetta Sarvà Giuseppe Romeo Francesco Guerrera Mariangela Siracusa Loredana Salerno Filippo Russo Alfredo Cagnotto Mara Goegan Tiziana Mennini 《Bioorganic & medicinal chemistry》2002,10(2):313-323
A series of new 4-amino-3-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl] propyl]thio]-5-(substitutedphenyl)[1,2,4]triazoles 11a-t was synthesized in order to obtain compounds with high affinity and selectivity for 5-HT(1A) receptor over the alpha(1)-adrenoceptor. A series of isomeric 4-amino-2-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl]propyl]-5-(substitutedphenyl)-2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r was also isolated and characterized. New compounds were tested to evaluate their affinity for 5-HT(1A) receptor and alpha(1)-adrenoceptor in radioligand binding experiments. As a general trend, triazoles 11a-t showed a preferential affinity for the 5-HT(1A) receptor whereas isomeric 2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r preferentially bind to the alpha(1)-adrenoceptor site. Several molecules showed affinities in the nanomolar range and 4-amino-3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(4-propyloxy-phenyl)[1,2,4]triazole (11o) was the most selective derivative for the 5-HT(1A) receptor (K(i) alpha(1)/K(i) 5-HT(1A)=55). The decrease in 5-HT(1A) receptor selectivity in 3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(substitutedphenyl)[1,2,4] triazole 14a-b, lacking in the amino group in 4-position of the triazole ring, in comparison with their analogues in the series 11a-t, suggest that the amino function represents a critical structural feature in determining 5-HT(1A) receptor selectivity in this class of compounds. 相似文献
18.
《Life sciences》1995,57(12):A141-A146
The thermodynamic parameters ΔG° , ΔH° and Δs° of the binding equilibrium of serotonin to 5-HT1A, 5-HT2A and 5-HT3 rat-brain membrane receptors have been determined by means of affinity constant measurements at six temperatures in the range 0 –35 ° C and van't Hoff plots. At variance with 5-HT1A and 5-HT3, the binding at the 5-HT2A receptors is strongly endothermic and entropy-driven. Comparison with the results obtained by other authors on 5-HT2A receptors in rats and humans suggests that the observed differences can be explained by a single amino acid difference in the receptor sequence between these two species. 相似文献
19.
Bojarski AJ Paluchowska MH Duszyńska B Kłodzińska A Tatarczyńska E Chojnacka-Wójcik E 《Bioorganic & medicinal chemistry》2005,13(6):2293-2303
Starting with the structure of potent 5-HT(1A) ligands, that is, MM77 [1-(2-methoxyphenyl)-4-(4-succinimidobutyl)piperazine, 4] and its constrained version 5 (MP349), previously obtained in our laboratory, a series of their direct analogues with differently substituted aromatic ring (R=H, m-Cl, m-CF(3), m-OCH(3), p-OCH(3)) were synthesized. The flexible and the corresponding 1e,4e-disubstituted cyclohexane derivatives were designed in order to investigate the influence of rigidification on 5-HT(1A) affinity, selectivity for 5-HT(2A), 5-HT(7), D(1), and D(2) binding sites and functional profile at pre- and postsynaptic 5-HT(1A) receptors. The new compounds 19-25 were found to be highly active 5-HT(1A) receptor ligands (K(i)=4-44 nM) whereas their affinity for other receptors was: either significantly decreased after rigidification (5-HT(7)), or controlled by substituents in the aromatic ring (alpha(1)), or influenced by both those structural modifications (5-HT(2A)), or very low (D(2), K(i)=5.3-31 microM). Since a distinct disfavor towards rigid compounds was observed for 5-HT(7) receptors only, it seems that the bioactive conformation of chain derivatives at those sites should differ from the extended one. Several in vivo models were used to asses functional activity of 19-25 at pre- (hypothermia in mice) and postsynaptic 5-HT(1A) receptors (lower lip retraction in rats and serotonin syndrome in reserpinized rats). Unlike the parent antagonists 4 and 5, all the new derivatives tested were classified as partial agonists with different potency, however, similar effects were observed within pairs (flexible and rigid) of the analogues. The obtained results indicated that substitution in the aromatic ring, but not spacer rigidification, controls the 5-HT(1A) functional activity of the investigated compounds. Moreover, an o-methoxy substituent in the structure of 5 seems to be necessary for its full antagonistic properties. Of all the new compounds studied, trans-4-(4-succinimidocyclohexyl)-1-(3-trifluoromethylphenyl)piperazine 24 was the most potent 5-HT(1A) receptor ligand in vitro (K(i)=4 nM) and in vivo, with at least 100-fold selectivity for the other receptors tested. 相似文献
20.
Prisinzano T Dukat M Law H Slassi A MacLean N DeLannoy I Glennon RA 《Bioorganic & medicinal chemistry letters》2004,14(18):4697-4699
2-(Anilino)imidazolines were identified as novel human 5-HT(1D) receptor ligands, but offered no particular advantage over previously reported 2-(benzyl)imidazolines. Pharmacokinetic and functional data were obtained for selected 2-(benzyl)imidazoline derivatives. 相似文献