首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A class of α-methyltryptamine sulfonamide glucocorticoid receptor (GR) modulators was optimized for agonist activity. The design of ligands was aided by molecular modeling, and key function-regulating pharmacophoric points were identified that are critical in achieving the desired agonist effect in cell based assays. Compound 27 was profiled in vitro and in vivo in models of inflammation. Analogs could be rapidly prepared in a parallel approach from aziridine building blocks.  相似文献   

2.
Steroidal glucocorticoids (GR agonists) have been widely used for the topical treatment of skin disorders, including atopic dermatitis. They are a very effective therapy, but they are associated with both unwanted local effects in the skin (skin thinning/atrophy) and systemic side effects. These effects can limit the long-term utility of potent steroids.Here we report on a topically delivered non-steroidal GR agonist, that has the potential to deliver high efficacy in the skin, but due to rapid metabolism in the blood & liver (“dual-soft”) it should have greater systemic safety than existing treatments. In addition, compared to less selective steroidal GR agonists, the new non-steroidal Selective Glucocorticoid Agonists (SEGRAs) have the potential to avoid the skin atrophy observed with existing topical steroids.Due to its potential for reduced skin atrophy and low systemic exposure, LEO 134310 (17) may be suitable for long term topical treatment of skin diseases such as atopic dermatitis and psoriasis.  相似文献   

3.
We report the discovery of highly potent and selective non-steroidal glucocorticoid receptor modulators with PK properties suitable for inhalation. A high throughput screen of the AstraZeneca compound collection identified sulfonamide 3 as a potent non-steroidal glucocorticoid receptor ligand. Further optimization of this lead generated indazoles 30 and 48 that were progressed to characterization in in vivo models. X-ray crystallography was used to gain further insight into the binding mode of selected ligands.  相似文献   

4.
Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing’s syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (Ki = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a ‘competitive’ GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.  相似文献   

5.
We have previously disclosed a series of glucocorticoid receptor (GR) ligands derived from 6-indole-1,2,3,4-tetrahydroquinolines through structure-activity relationship (SAR) of the pendent C6-indole ring. In parallel with this effort, we now report SAR of the tetrahydroquinoline A-ring that identified the importance of a C3 hydroxyl in improving GR selectivity within a series of non-steroidal GR agonists.  相似文献   

6.
7.
Mifepristone, also known as RU486, is a potent glucocorticoid receptor (GR) antagonist that inhibits GR-mediated transactivation. As an alternative to existing antidepressants, RU486 has been shown to rapidly reverse psychotic depression, most likely by blocking GR. Although a number of studies have demonstrated RU486-induced GR antagonism, the precise mechanism of action still remains unclear. To identify the GR domain involved in RU486-induced suppression, GR transactivation and nuclear translocation were examined using cells transfected with human GR (hGR), Guyanese squirrel monkey GR (gsmGR), and GR chimeras into COS-1 cells. RU486 showed a much more potent suppressive effect in gsmGR-expressing cells versus hGR-expressing cells, without significant cortisol- or RU486-induced changes in nuclear translocation. A GR chimera containing the gsmGR AF1 domain (amino acids 132–428) showed a marked decrease in luciferase activity, suggesting that this domain plays an important role in RU486-induced GR antagonism. Furthermore, fluorescence recovery after photobleaching (FRAP) analysis indicated that, in the presence of RU486, gsmGR AF1 domain contributes to GR mobility in living COS-1 cells. Taken together, these results demonstrate, for the first time, that the antagonistic effects of RU486 on GR transactivation involve a specific GR domain.  相似文献   

8.
Four structurally novel stereoisomeric analogues of 1,25-dihydroxyvitamin D3 (3ad) bearing a spiro-oxetane fused at the C2 position of the A-ring have been designed and synthesised in a convergent manner. The requisite A-ring enyne precursors (13a,b) for the vitamin D analogues (3a,b) and (3c,d), respectively, were synthesised from pentaerythritol according to an eleven-step procedure. Preliminary biological evaluation of the analogues using the bovine thymus vitamin D receptor (VDR) suggested that the incorporation of the spiro-oxetane moiety instead of a gem-dimethyl group at the C2 position had a beneficial effect on the VDR affinity.  相似文献   

9.
Attempts to block metabolism by incorporating a 9-fluoro substituent at the A-ring of compound 1 (SCH 900229) using electrophilic Selectfluor? led to an unexpected oxidation of the A-ring to give difluoroquinone analog 1a. Oxidation of other related chromene γ-secretase inhibitors 28 resulted in similar difluoroquinone analogs 2a8a, respectively. These quinone products exhibited comparable in vitro potency in a γ-scretase membrane assay, but were several fold less potent in a cell-based assay in lowering Aβ40–42, compared to their parent compounds.  相似文献   

10.
The raphe-hippocampal serotonin (5-HT) system is involved in the regulation of the hypothalamus-pituitary-adrenal axis. The purpose of this study was to determine and compare the roles of 5-HT in the regulation of glucocorticoid receptor (GR) binding in the raphe nuclei and in the hippocampus. The effects of 5-HT, 5-HT agonists, and the 5-HT reuptake inhibitor citalopram on GR binding sites were studied in primary cultures of the fetal raphe nuclei and the hippocampus. Exposure of hippocampal cells to 5-HT, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI; a 5-HT2 agonist), or citalopram resulted in an increase in number of GR binding sites. The effect of DOI was blocked by ketanserin (a 5-HT2 antagonist). Specific and saturable GR binding was found in raphe cells. Exposure of raphe cells to 5-HT, (+/-)-8 hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT1A agonist), or citalopram induced a significant decrease in number of GR binding sites. The effect of 8-OH-DPAT was reversed by WAY 100135 [N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropiona mide; a 5-HT1A antagonist]. These results show that the regulation of GRs during fetal life is structure-dependent and involves different 5-HT receptor subtypes. Moreover, the regulation of hippocampal GRs by citalopram suggests an action of antidepressants independent of their effects on monoamines.  相似文献   

11.
S1P receptors (S1PR1-5) are a group of GPCRs activated by a high affinity binding with S1P that have important roles in the regulation of the immune system. A potent S1PR agonist FTY720 is an immunomodulator used to treat multiple sclerosis and several ‘second generation’ drugs are under clinical development. Subtype-selective agonists have been reported for each S1PR isotype, some of which are used as pharmacological tools for functional studies. Here we report the discovery and initial characterization of compound 5c, a benzo[b]thiophene amino carboxylate which exhibits potent and selective agonist activity for S1PR4. Compound 5c has an EC50 = 200 nM as an agonist in GTPγ35S binding assay for S1PR4 and exhibits no activity against S1PR1,2,3,5. We confirmed its potent activity and decent S1PR subtype selectivity using biochemical and cellular assays.  相似文献   

12.
Non-secosteroidal VDR ligands without any assymmetric carbon were designed and synthesized based on the structure of the previously reported non-secosteroidal VDR agonist LG190178. The VDR-agonistic activity of all synthesized compounds was evaluated, and 7b emerged as a potent agonist activity with an EC50 value of 9.26?nM. Moreover, a docking simulation analysis was also performed to determine the binding mode of 7b with VDR-LBD.  相似文献   

13.
A novel series of A-ring modified hexacyclic camptothecin derivatives containing a 1,3-oxazine ring were first designed and synthesized. All of the hexacyclic camptothecins were assayed for in vitro cytotoxicity against nine human cancer cell lines. Among these compounds, 9b and 9c showed most potent cytotoxicity against several cell lines. Particularly, 9c was about 13-fold more potent than camptothecin, and about sixfold more potent than topotecan toward HEPG-2. Furthermore, it was also found that the N-alkyl substituted derivatives were more potent than the N-aryl and N-benzyl substituted compounds against most cell lines.  相似文献   

14.
Epiceanothic acid (1) is a naturally occurring, but very rare pentacyclic triterpene with a unique pentacyclic triterpene (PT) structure. An efficient synthesis of 1 starting from betulin (3) has been accomplished in 12-steps with a total yield of 10% in our study. Compound 1 and selected synthetic intermediates were further evaluated as anti-HIV-1 agents, inhibitors of glycogen phosphorylase (GP), and cytotoxic agents. Compound 1 exhibited moderate HIV-1 inhibition. Most importantly, compound 5, with an opened A-ring, showed significant GP inhibitory activity with an IC50 of 0.21 μM, suggesting a potential for development as an anti-diabetic agent. On the other hand, compound 12, with a closed A-ring, showed potent cytotoxicity against A549 and MCF-7 human tumor cell lines, with IC50 values of 0.89 and 0.33 μM, respectively. These results suggest that the A-ring of PTs is an important pharmacophore that could be modified to involve different biological activities.  相似文献   

15.
Dihydrofuran-2-one and dihydropyrrol-2-one derivatives were identified as novel, potent and selective mineralocorticoid receptor (MR) antagonists by the structure-based drug design approach utilizing the crystal structure of MR/compound complex. Introduction of lipophilic substituents directed toward the unfilled spaces of the MR and identification of a new scaffold, dihydropyrrol-2-one ring, led to potent in vitro activity. Among the synthesized compounds, dihydropyrrol-2-one 11i showed an excellent in vitro activity (MR binding IC50 = 43 nM) and high selectivity over closely related steroid receptors such as the androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) (>200-fold for AR and PR, 100-fold for GR).  相似文献   

16.
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.  相似文献   

17.
The discovery and optimization of a novel series of BRS-3 agonists are described. We explored a potent BRS-3 agonist with low brain penetration to avoid an adverse effect derived from central nervous system exposure. Through the derivatization process, chiral diazepines 9f and 9g were identified as possessing low brain penetration as well as potent in vitro activity against human and mouse BRS-3s.  相似文献   

18.
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.  相似文献   

19.
Ginsenoside Compound K (CK) showed potent activity against IgE for the treatment of asthma. A series of CK analogues were then synthesized by straightforward procedures. The in vivo anti-IgE activity evaluations using the OVA-induced asthmatic mouse model revealed preliminary SARs of the CK analogues, which showed that the sugar type, modifications on A-ring and the C20 side chain of CK all affected much on the activities. Primary SARs optimization led to the discovery of compounds T1, T2, T3, T8 and T12, which displayed superior or comparable anti-asthmatic effects (IgE value?=?1237.11?±?106.28, 975.82?±?160.32, 1136.96?±?121.85, 1191.08?±?107.59 and 1258.27?±?148.70?ng/mL, respectively) in comparison with CK (1501.85?±?184.66?ng/mL). These potent compounds could serve as leads for further development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号