首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brassinosteroids (BRs) are phytohormones that control several important agronomic traits, such as flowering, plant architecture, seed yield, and stress tolerance. To manipulate the BR levels in plant tissues using specific inhibitors of BR biosynthesis, a series of novel azole derivatives were synthesized and their inhibitory activity on BR biosynthesis was investigated. Structure–activity relationship studies revealed that 2RS, 4RS-1-[4-(2-allyloxyphenoxymethyl)-2-(4-chlorophenyl)-[1,3]dioxolan-2-ylmethyl]-1H-[1,2,4]triazole (G2) is a highly selective inhibitor of BR biosynthesis, with an IC50 value of approximately 46 ± 2 nM, which is the most potent BR biosynthesis inhibitor observed to date. Use of gibberellin (GA) biosynthesis mutants and BR signaling mutants to analyze the mechanism of action of this synthetic series indicated that the primary site of action is BR biosynthesis. Experiments feeding BR biosynthesis intermediates to chemically treated Arabidopsis seedlings suggested that the target sites of this synthetic series are CYP90s, which are responsible for the C-22 and/or C-23 hydroxylation of campesterol.  相似文献   

2.
Screening for brassinosteroid (BR) biosynthesis inhibitors was performed to find chemicals that induce dwarfism in Arabidopsis, mutants that resembled BR biosynthesis mutants that can be rescued by BR. Through this screening experiment, the compound brassinazole was selected as the most potent chemical. In dark-grown Arabidopsis, brassinazole-induced morphological changes were nearly restored to those of wild type by treatment with brassinolide. The structure of brassinazole is similar to pacrobutrazol, a gibberellin biosynthesis inhibitor. However, in assays with cress (Lepidium sativum) plants, brassinazole-treated plants did not show recovery after the addition of gibberellin but showed good recovery after the addition of brassinolide. These data demonstrate that brassinazole is a specific BR biosynthesis inhibitor. Brassinazole-treated cress also showed dwarfism, with altered leaf morphology, including the downward curling and dark green color typical of Arabidopsis BR-deficient mutants, and this dwarfism was reversed by the application of 10 nM brassinolide. This result suggests that BRs are essential for plant growth, and that brassinazole can be used to clarify the function of BRs in plants as a complement to BR-deficient mutants. The brassinazole action site was also investigated by feeding BR biosynthesis intermediates to cress grown in the light.  相似文献   

3.
Intact cells of Flavobacterium dehydrogenans grown on glucose or acetate did not incorporate mevalonic acid-[14C]. After treatment with lysozyme the protoplasts were lysed by sonication in a dilute medium containing mevalonic acid-[14C] and the cell-free system produced incorporated label into uncyclized C40, monocyclic C45 and bicyclic C50 carotenoids of which decaprenoxanthin was the most abundant.With mevalonate-[2-14C,4R-4-3H1] the 14C:3H ratios of the carotenoids showed that the hydrogen atoms at C-2 and C-6 of the ring and that at C-3 of the 1-hydroxy, 2-methyl but-2-ene-4-yl residues of decaprenoxanthin were derived from the 4-pro-R hydrogen atom of mevalonic acid.Mevalonate-[2-14C,2R-2-3H1] and mevalonate-[2-14C,2S-2-3H1] gave ratios which showed that the C-4 hydrogen atoms of decaprenoxanthin were derived from the 2-pro-S hydrogen atom of mevalonic acid.  相似文献   

4.
5.
A key enzyme in the biosynthesis of clinically important aminoglycoside antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose through a multistep reaction. This reaction mechanism is similar to the catalysis by dehydroquinate synthase (DHQS) of the cyclization of 3-deoxy-D-arabino-heputulosonate-7-phosphate to dehydroquinate in the shikimate pathway, but significant dissimilarity between these enzymes is also known, particularly in the stereochemistry of the phosphate elimination reaction and the cyclization. Here, the crystal structures of DOIS from Bacillus circulans and its complex with the substrate analog inhibitor carbaglucose-6-phosphate, NAD+, and Co2+ have been determined to provide structural insights into the reaction mechanism. The complex structure shows that an active site exists between the N-terminal and C-terminal domains and that the inhibitor coordinates a cobalt ion in this site. Two subunits exist as a dimer in the asymmetric unit. The two active sites of the dimer were observed to be different. One contains a dephosphorylated compound derived from the inhibitor and the other includes the inhibitor without change. The present study suggested that phosphate elimination proceeds through syn-elimination assisted by Glu 243 and the aldol condensation proceeds via a boat conformation. Also discussed are significant similarities and dissimilarities between DOIS and DHQS, particularly in terms of the structure at the active site and the reaction mechanism.  相似文献   

6.
在植物的生长发育过程中,植物激素发挥着重要的作用. 最新研究对油菜素内酯、赤霉素两类植物激素与光的信号通路共同调控植物的细胞伸长和光形态建成的分子机制给予了精确的阐述,这也为提高农作物产量提拱了理论基础.  相似文献   

7.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

8.
Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses. They are also known to be root-derived chemical signals that regulate symbiotic and parasitic interactions with arbuscular mycorrhizal fungi and root parasitic plants, respectively. Since the discovery of the hormonal function of SLs in 2008, there has been much progress in the SL research field. In particular, a number of breakthroughs have been achieved in our understanding of SL biosynthesis, transport and perception. The discovery of the hormonal function of SL was quite valuable not only as the identification of a new class of plant hormones, but also as the discovery of the long-sought-after SL biosynthetic and response mutants. These mutants in several plant species provided us the genetic resources to address fundamental questions regarding SL biosynthesis and perception. Such mutants were further characterized later, and biochemical analyses of these genetically identified factors have uncovered the outline of SL biosynthesis and perception so far. Moreover, new genes involved in SL transport have been discovered through reverse genetic analyses. In this review, we summarize recent advances in SL research with a focus on biosynthesis, transport and perception.  相似文献   

9.
10.
We describe the asymmetric synthesis of the 5-amino-5-deoxy-l-fucose (l-fuco-nojirimycin) which appears as a very potent fucosidase inhibitor with a K(i) value of 1 nM.  相似文献   

11.
This study focused on the characterization of a novel cysteine proteinase inhibitor from Enterolobium contortisiliquum seeds targeting the inhibition of the growth of Callosobruchus maculatus larvae, an important cosmopolitan pest of the cowpea Vigna unguiculata during storage. The inhibitor was isolated by ion-exchange besides of size exclusion chromatography. EcCI molecular mass is 19,757 Da, composed of two polypeptide chains. It strongly inhibits papain (Kiapp 0.036 nM) and proteinases from the midguts of C. maculatus (80 μg mL?1, 60% inhibition). The inhibitory activity is reduced by 40% after a heat treatment at 100 °C for 2 h. The protein displayed noxious activity at 0.5% and 1% (w/w) when incorporated in artificial seeds, reducing larval mass in 87% and 92%, respectively. Treatment of C. maculatus larvae with conjugated EcCI-FIT and subsequent biodistribution resulted in high fluorescence intensity in midguts and markedly low intensity in malpighian tubules and fat body. Small amounts of labeled proteins were detected in larvae feces. The detection of high fluorescence in larvae midguts and low fluorescence in their feces indicate the retention of the FITC conjugated EcCI inhibitor in larvae midguts. These results demonstrate the potential of the natural protein from E. contortisiliquum to inhibit the development of C. maculatus.  相似文献   

12.
The effects of different concentrations (0.2, 2, 20, 200 mg l−1) of two sterol biosynthesis inhibitor (SBI) fungicides, i.e. fenpropimorph and fenhexamid, were evaluated on the spore germination, germ tube elongation, sporulation, and root colonization of Glomus intraradices grown monoxenically in association with transformed carrot roots. The percentage of germinated spores incubated on the SBI fungicides and the length of the germ tubes decreased with increasing concentrations of both fungicides. However, for spore germination this impact was fungistatic rather than fungicidal. Extraradical mycelium architecture and spore production in contact with the SBI fungicides were also strongly impacted at high concentration (20 mg l−1). Conversely, the colonization of roots developing in the fungicide-free compartment, but interconnected with the extraradical mycelium developing on the SBI fungicides, appeared unaffected. Our results demonstrated that the monoxenic culture system could be used as a standardized, reproducible technique to compare the impacts of different molecules on arbuscular mycorrhizal fungi, and for the initial screening of new candidate molecules before registration.  相似文献   

13.
Antibiotic 1063-Z isolated from culture fluids of Streptoverticillium mobaraense was identified as pulvomycin. Pulvomycin was observed to inhibit protein biosynthesis in growing cells of Bacillus brevis. The poly(U)-directed poly(Phe) synthesis in cell-free systems of Bacillus brevis and Escherichia coli was highly susceptible to the antibiotic. Pulvomycin did not affect the transfer of Phe to tRNA. The results suggest that the target of pulvomycin action is the polypeptide chain elongation.  相似文献   

14.
Both 2-(4-ethylphenoxy)triethylamine and 2-(3,4-dimethylphenoxy)triethylamine markedly inhibited the biosynthesis of limonoids in lemon leaves. However  相似文献   

15.
A new series of flavonoid derivatives have been designed, synthesized and evaluated as potent AChE inhibitors. Most of them showed more potent inhibitory activities to AChE than rivastigmine. The most potent inhibitor isoflavone derivative 10d inhibit AChE with a IC50 of 4 nM and showed high BChE/AChE inhibition ratio (4575-fold), superior to donepezil (IC50 = 12 nM, 389-fold). Molecular docking studies were also performed to explore the detailed interaction with AChE.  相似文献   

16.
Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects.  相似文献   

17.
The inhibitory effect of a series of analogs of CPTA, 2-(4-chlorophenylthio)-triethylamine-HCl, and ammonia derivatives on carotenoid biosynthesis in Phycomyces blakesleeanus mutants was studied. The types of inhibition exhibited allowed no firm conclusions about the biosynthetic route to β-carotene from either β-zeacarotene or lycopene. However, the evidence suggests at present that both pathways are operative. It was found that a slight change in structure of inhibitor resulted in a different type of action. Conclusions based on a single inhibitor could be cited as “evidence” for a certain pathway.  相似文献   

18.
19.
The ester of N-benzoylphenylalanine and N-benzoylphenylalaninol, asperphenamate, was isolated from solid cultures of Penicillium brevicompactum. Isotope from l-[U-14C] phenylalanine was well incorporated into both benzoyl groups and into the phenylalanine and phenylalaninol moieties. Isotope from [U-14C]benzoic acid was also well incorporated into asperphenamate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号