首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs) in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants’ task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound) as well as violations of the visual-auditory prediction (i.e., an incongruent sound) elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]). Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density) equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.  相似文献   

2.
3.
4.
5.
We hypothesize that color vision depends on random connections between cones containing different pigments and neurons at higher levels in the macaque visual system. This hypothesis predicts the same types and proportions of chromatic receptive fields reported in the physiological literature at least up through the lateral geniculate nucleus. The results suggest that the specificity of connections demanded by the labelled-line model of color coding are unnecessary to account for current physiological data.  相似文献   

6.
The Main Sequence of Saccades Optimizes Speed-accuracy Trade-off   总被引:1,自引:0,他引:1  
In primates, it is well known that there is a consistent relationship between the duration, peak velocity and amplitude of saccadic eye movements, known as the ‘main sequence’. The reason why such a stereotyped relationship evolved is unknown. We propose that a fundamental constraint on the deployment of foveal vision lies in the motor system that is perturbed by signal-dependent noise (proportional noise) on the motor command. This noise imposes a compromise between the speed and accuracy of an eye movement. We propose that saccade trajectories have evolved to optimize a trade-off between the accuracy and duration of the movement. Taking a semi-analytical approach we use Pontryagin’s minimum principle to show that there is an optimal trajectory for a given amplitude and duration; and that there is an optimal duration for a given amplitude. It follows that the peak velocity is also fixed for a given amplitude. These predictions are in good agreement with observed saccade trajectories and the main sequence. Moreover, this model predicts a small saccadic dead-zone in which it is better to stay eccentric of target than make a saccade onto target. We conclude that the main sequence has evolved as a strategy to optimize the trade-off between accuracy and speed.  相似文献   

7.
8.
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.  相似文献   

9.
10.
A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach.  相似文献   

11.
12.
D. F. Lyman  B. Yedvobnick 《Genetics》1995,141(4):1491-1505
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.  相似文献   

13.
14.
15.
The neural correlates of visual awareness are elusive because of its fleeting nature. Here we have addressed this issue by using single trial statistical “brain reading” of neurophysiological event related (ERP) signatures of conscious perception of visual attributes with different levels of saliency. Behavioral reports were taken at every trial in 4 experiments addressing conscious access to color, luminance, and local phase offset cues. We found that single trial neurophysiological signatures of target presence can be observed around 300 ms at central parietal sites. Such signatures are significantly related with conscious perception, and their probability is related to sensory saliency levels. These findings identify a general neural correlate of conscious perception at the single trial level, since conscious perception can be decoded as such independently of stimulus salience and fluctuations of threshold levels. This approach can be generalized to successfully detect target presence in other individuals.  相似文献   

16.
17.
18.
It is increasingly clear that we extract patterns of temporal regularity between events to optimize information processing. The ability to extract temporal patterns and regularity of events is referred as temporal expectation. Temporal expectation activates the same cerebral network usually engaged in action selection, comprising cerebellum. However, it is unclear whether the cerebellum is directly involved in temporal expectation, when timing information is processed to make predictions on the outcome of a motor act. Healthy volunteers received one session of either active (inhibitory, 1Hz) or sham repetitive transcranial magnetic stimulation covering the right lateral cerebellum prior the execution of a temporal expectation task. Subjects were asked to predict the end of a visually perceived human body motion (right hand handwriting) and of an inanimate object motion (a moving circle reaching a target). Videos representing movements were shown in full; the actual tasks consisted of watching the same videos, but interrupted after a variable interval from its onset by a dark interval of variable duration. During the ‘dark’ interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the spacebar of the keyboard. Performance on the timing task was analyzed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. The active group exhibited greater absolute timing error compared with the sham group only in the human body motion task. Our findings suggest that the cerebellum is engaged in cognitive and perceptual domains that are strictly connected to motor control.  相似文献   

19.
Single neurons in cortical area LIP are known to carry information relevant to both sensory and value-based decisions that are reported by eye movements. It is not known, however, how sensory and value information are combined in LIP when individual decisions must be based on a combination of these variables. To investigate this issue, we conducted behavioral and electrophysiological experiments in rhesus monkeys during performance of a two-alternative, forced-choice discrimination of motion direction (sensory component). Monkeys reported each decision by making an eye movement to one of two visual targets associated with the two possible directions of motion. We introduced choice biases to the monkeys'' decision process (value component) by randomly interleaving balanced reward conditions (equal reward value for the two choices) with unbalanced conditions (one alternative worth twice as much as the other). The monkeys'' behavior, as well as that of most LIP neurons, reflected the influence of all relevant variables: the strength of the sensory information, the value of the target in the neuron''s response field, and the value of the target outside the response field. Overall, detailed analysis and computer simulation reveal that our data are consistent with a two-stage drift diffusion model proposed by Diederich and Bussmeyer [1] for the effect of payoffs in the context of sensory discrimination tasks. Initial processing of payoff information strongly influences the starting point for the accumulation of sensory evidence, while exerting little if any effect on the rate of accumulation of sensory evidence.  相似文献   

20.
The brief presentation of an emotional distractor can temporarily impair perception of a subsequent, rapidly presented target, an effect known as emotion-induced blindness (EIB). How rapidly does this impairment unfold? To probe this question, we examined EIB for targets that immediately succeeded (“lag-1”) emotional distractors in a rapid stream of items relative to EIB for targets at later serial positions. Experiments 1 and 2 suggested that emotional distractors interfere with items presented very soon after them, with impaired target perception emerging as early as lag-1. Experiment 3 included an exploratory examination of individual differences, which suggested that EIB onsets more rapidly among participants scoring high in measures linked to negative affect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号