首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aβ may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aβ-induced synaptic loss, Aβ synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aβ. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aβ. In summary, Aβ-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues.  相似文献   

2.
Neuroinflammation has been reported to be associated with Alzheimer’s disease (AD) pathogenesis. Neuroinflammation is generally considered as an outcome of glial activation; however, we recently demonstrated that T helper (Th)17 cells, a subpopulation of proinflammatory CD4+ T cells, are also involved in AD pathogenesis. Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, can be immunosuppressive, but its effects on lymphocyte-mediated neuroinflammation in AD pathogenesis have not been well addressed. In the current study we administered TGF-β1 via intracerebroventricle (ICV) and intranasal (IN) routes in AD model rats to investigate its antiinflammatory and neuroprotective effects. The AD rat model was prepared by bilateral hippocampal injection of amyloid-β (Aβ)1–42. TGF-β1 was administered via ICV one hour prior to Aβ1–42 injection or via both nares seven days after Aβ1–42 injection. ICV administration of TGF-β1 before Aβ1–42 injection remarkably ameliorated Aβ1–42-induced neurodegeneration and prevented Aβ1–42-induced increases in glia-derived proinflammatory mediators (TNF-α, IL-1β and iNOS), as well as T cell-derived proinflammatory cytokines (IFN-γ, IL-2, IL-17 and IL-22), in the hypothalamus, serum or cerebrospinal fluid (CSF) in a concentration-dependent manner. TGF-β1 pretreatment also prevented Aβ1–42-induced decreases in the neurotrophic factors, IGF-1, GDNF and BDNF, and in the antiinflammatory cytokine, IL-10. Similarly, IN administration of TGF-β1 after Aβ1–42 injection reduced neurodegeneration, elevation of proinflammatory mediators and cytokines, and reduction of neurotrophic and antiinflammatory factors, in the hypothalamus, serum or CSF. These findings suggest that TGF-β1 suppresses glial and T cell-mediated neuroinflammation and thereby alleviates AD-related neurodegeneration. The effectiveness of IN administered TGF-β1 in reducing Aβ1–42 neurotoxicity suggests a possible therapeutic approach in patients with AD.  相似文献   

3.
Thirteen new polyamine derivatives coupled to hydroxybenzotriazole have been synthesized and evaluated for their in vitro antikinetoplastid activity. Trypanosoma Trypanothione reductase (TryR) was envisioned as a potential target. Among all tested molecules, only one compound, a N3-spermidine–benzotriazole derivative, displayed relevant inhibitory activity on this enzyme but was not active on parasites. The corresponding Boc-protected spermidine–benzotriazole was however trypanocidal against Trypanosoma brucei gambiense with an IC50 value of 1 μM and was completely devoid of cytotoxicity. On the intramacrophage amastigotes of Leishmania donovani, a N2-spermidine conjugate of this series, exhibited an interesting IC50 value of 3 μM associated with both low cytotoxicity against axenic Leishmania donovani. These new compounds are promising leads for the development of antikinetoplastid agents and their targets have to be deciphered.  相似文献   

4.
1-40 and Aβ1-42 have been shown to be the main components of the amyloid plaques found in the extracellular environment of neurons in Alzheimer’s disease. β-Casein, a milk protein, has been shown to display a remarkable chaperone ability in preventing the aggregation of proteins. In this study, the ability of β-casein to suppress the amyloid fibril formation of Aβ1-42 has been examined through in vitro studies and molecular docking simulation. The results demonstrate the inhibitory effect of β-casein on fibril formation in Aβ1-42, in a concentration dependent manner, suggesting that the chaperone binds to the Aβ1-42 and prevents amyloid fibril formation. Molecular docking results show that the inhibitory effect of the β-casein may be due to binding of the chaperone with the aggregation-prone region of the Aβ1-42 mainly via hydrophobic interactions. β-Casein probably binds to the CHC and C-terminal domain of the Aβ1-42, and stabilizes proteins by inhibiting the conversion of monomeric Aβ1-42 into fibrils. Thus our data suggests that the hydrophobic interactions between β-casein and Aβ1-42 play an important role in the burial of the hydrophobic part of the Aβ1-42. This means that β-casein maybe considered for use in preventing amyloid fibril formation in degenerative diseases such as Alzheimer.  相似文献   

5.
Photoimmunotherapy (PIT) using the near-infrared-absorbing photosensitizing phthalocyanine dye, IRDye 700DX (IR-700), conjugated with a tumor-targeting antibody such as panitumumab (Pan) has shown efficacy in in vitro studies and several preclinical models in mice with promise for clinical translation. PIT results in rapid necrotic cell death in vitro and tumor shrinkage in vivo. Photochemical studies with the Pan-IR-700 conjugate showed that this agent can support generation of singlet oxygen and also generate reactive oxygen species after exposure to near-infrared (NIR) light. Moreover, in vitro studies using A431 cells, singlet oxygen scavengers abrogated the efficacy of PIT with Pan-IR-700, while oxygen depletion to undetectable levels in the exposure chamber almost completely inhibited the cellular cytotoxicity of PIT. Survival of tumor bearing mice was prolonged in PIT-treated animals but mice whose tumors were made transiently hypoxic prior to PIT had no benefit from the treatment. The results from this study support a central role for molecular oxygen-derived species in cell death caused by PIT.  相似文献   

6.
Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced AD mice.  相似文献   

7.
Dietary interventions such as caloric restriction (CR) extend lifespan and health span. Recent data from animal and human studies indicate that CR slows down the aging process, benefits general health, and improves memory performance. Caloric restriction also retards and slows down the progression of different age-related diseases, such as Alzheimer’s disease. However, the specific molecular basis of these effects remains unclear. A better understanding of the pathways underlying these effects could pave the way to novel preventive or therapeutic strategies. In this review, we will discuss the mechanisms and effects of CR on aging and Alzheimer’s disease. A potential alternative to CR as a lifestyle modification is the use of CR mimetics. These compounds mimic the biochemical and functional effects of CR without the need to reduce energy intake. We discuss the effect of two of the most investigated mimetics, resveratrol and rapamycin, on aging and their potential as Alzheimer’s disease therapeutics. However, additional research will be needed to determine the safety, efficacy, and usability of CR and its mimetics before a general recommendation can be proposed to implement them.  相似文献   

8.
Diagnosis and monitoring of sporadic Alzheimer’s disease (AD) have long depended on clinical examination of individuals with end-stage disease. However, upcoming anti-AD therapies are optimally initiated when individuals show very mild signs of neurodegeneration. There is a developing consensus for cerebrospinal fluid amyloid-β (Aβ) as a core biomarker for the mild cognitive impairment stage of AD. Aβ is directly involved in the pathogenesis of AD or tightly correlated with other primary pathogenic factors. It is produced from amyloid precursor protein (APP) by proteolytic processing that depends on the β-site APP-cleaving enzyme 1 and the γ-secretase complex, and is degraded by a broad range of proteases. This review summarizes targeted proteomic studies of Aβ in biological fluids and identifies clinically useful markers of disrupted Aβ homeostasis in AD. The next 5 years will see a range of novel assays developed on the basis of these results. From a longer perspective, establishment of the most effective combinations of different biomarkers and other diagnostic modalities may be foreseen.  相似文献   

9.
Alzheimer??s disease (AD) is among the most important health-care problems in the world. The two pathological hallmarks of AD are extracellular neuritic amyloid plaques and intracellular neurofibrillary tangles. The aggregation of A?? and ??-sheet formation are considered to be the critical events which render these peptides neurotoxic. AD is affecting a large percentage of the elderly around the world. Many studies have been done on drugs to cure or at least slow Alzheimer??s disease. Most drugs produced for this disease aim at compensating for the performance of specific cell groups affected by the disease or restoring the function of these cells.This study examined the interaction of crocin, the main pigment of saffron, with the amyloid-?? peptides 1?+?40 (A?? 40) to determine the effects on peptide conformation and fibril formation using fluorescence spectroscopy, CD spectroscopy and electron microscopy. ThT data demonstrated the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of A??40. Incubation of pre-formed A??40 fibrils with crocin resulted in extensive lateral aggregation and precipitation of the fibrils. Consistent with this, electron microscopy data indicated that crocin decreased the number of fibrils formed and significantly reduced the average fibril length of A??40 as assessed by low levels of thioflavin T binding data. The mechanism by which, crocin prevented fibril formation was demonstrated by ANS binding assay and CD spectroscopy. In summary, crocin interacts with A?? peptides and prevents amyloid formation. This means that it has the potential to be an important therapeutic drug against AD.  相似文献   

10.
Converging lines of evidence suggest that soluble Aβ-amyloid oligomers play a pivotal role in the pathogenesis of Alzheimer’s disease, and present direct effectors of synaptic and cognitive dysfunction. Three pathological E22-Aβ-amyloid point mutants (E22G, E22K, E22Q) and the deletion mutant E22Δ exhibit an enhanced tendency to form prefibrillar aggregates. The present study assessed the effect of these four mutations using molecular dynamics simulations and subsequent structural and energetic analyses. Our data shows that E22 plays a unique role in wild type Aβ, since it has a destabilising effect on the oligomer structure due to electrostatic repulsion between adjacent E22 side chains. Mutations in which E22 is replaced by an uncharged residue result in higher oligomer stability. This effect is also observed to a lesser extent for the E22K mutation and is consistent with its lower pathogenicity compared to other mutants. Interestingly, deletion of E22 does not destroy the amyloid fold but is compensated by local changes in the backbone geometry that allow the preservation of a structurally important salt bridge. The finding that all mutant oligomers investigated exhibit higher internal stability than the wild type offers an explanation for the experimentally observed enhanced oligomer formation and stability.  相似文献   

11.
Stem cells serve as potential therapeutics due to their high proliferative capacity, low immunogenic reactivity and their differentiating capabilities. Several pre-clinical and early-stage clinical studies are carried out to treat genetic diseases, cancers and neurodegenerative disorders with promising preliminary results. However, there are still many challenges that scientists are trying to overcome such as the unclear expression profile of stem cells in vivo, the homing of stem cells to the site of injury and their potential immune-reactivity. Prospective research lies in gene editing of autologous stem cells in vitro and safe injection of these modified cells back into patients. Here, we review the clinical trials executed using stem cell therapy in an attempt to cure challenging diseases like cancer, Parkinson’s and Alzheimer’s diseases.  相似文献   

12.
It has been proposed that the amyloid-β peptides (Aβ) cause the neuronal degeneration in the Alzheimer’s disease brain. An imbalance between peptide production at the neuronal level and their elimination across the blood–brain–barrier (BBB) results in peptide accumulation inside the brain. The identification and functional characterization of the transport systems in the BBB with the capacity to transport Aβ is crucial for the understanding of Aβ peptide traffic from the brain to the blood. In this context, it has been suggested that the P-glycoprotein (P-gp), expressed in endothelial cells of the BBB, plays a role in the elimination of Aβ. However, there is little, if any, experimental evidence to support this; therefore, the aim of this investigation was to determine whether P-gp is capable of transporting Aβ peptides. Our results show that ATPase activity measured in plasma membrane vesicles of K562 cells overexpressing P-gp is not increased by the presence of Aβ42, suggesting that Aβ42 is not a P-gp substrate. Similarly, P-gp of pirarubicin was unaffected by Aβ42. Moreover, the overexpression of P-gp does not protect cells against Aβ42 toxicity. Taken together, our results support the conclusion that Aβ42 is not transported by P-gp.  相似文献   

13.
Alzheimer’s disease (AD) is the most common cause of dementia. Its pathology often accompanies inflammatory action, and astrocytes play important roles in such procedure. Rela(p65) is one of significant message factors in NF-κB pathway which has been reported high expression in astrocyte treated by Aβ. HupA, an alkaloid isolated from Chinese herb Huperzia serrata, has been widely used to treat AD and observations reflected that it improves memory and cognitive capacity of AD patients. To reveal its molecular mechanisms on p65, we cultured astrocytes, built Aβ-induced AD model, treated astrocytes with HupA at different concentrations, assayed cell viability with MTT, and detected p65 expression by immunohistochemistry and PCR. Our results revealed that treatment with 10 μM Aβ1–42 for 24 h induced a significant increase of NF-κB in astrocytes; HupA significantly down-regulated p65 expression induced by Aβ in astrocytes. This study infers that HupA can regulate NF-κB pathway to treat AD.  相似文献   

14.
The aging process correlates with a progressive failure in the normal cellular and organ functioning; these alterations are aggravated in Alzheimer’s disease (AD). In both aging and AD there is a general decrease in the capacity of the body to eliminate toxic compounds and, simultaneously, to supply the brain with relevant growth and nutritional factors. The barriers of the brain are targets of this age related dysfunction; both the endothelial cells of the blood–brain barrier and the choroid plexus epithelial cells of the blood-cerebrospinal fluid barrier decrease their secretory capacity towards the brain and their ability to remove toxic compounds from the brain. Additionally, during normal aging and in AD, the permeability of the brain barriers increase. As such, a greater contact of the brain parenchyma with the blood content alters the highly controlled neural environment, which impacts on neural function. Of interest, the brain barriers are more than mere obstacles to the passage of molecules and cells, and therefore active players in brain homeostasis, which is still to be further recognized and investigated in the context of health and disease. Herein, we provide a review on how the brain barriers change during aging and in AD and how these processes impact on brain function.  相似文献   

15.
The synthesis, cytotoxicity, and nucleoside binding of some platinum–acridinylthiourea conjugates derived from the prototypical compound [PtCl(en)(ACRAMTU)](NO3)2 {PT-ACRAMTU; en=ethane-1,2-diamine, ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, protonated form} are reported. To establish structure–activity relationships within this class of compounds, systematic changes were made to the thiourea nonleaving group, which links the intercalator to platinum. Three new derivatives of ACRAMTU, one di-, one tri-, and one tetraalkylated, were generated, where the degree of alkylation indicates the number of alkyl groups attached to the SCN2 framework. Subsequent reaction of the tri- and tetraalkylated derivatives with activated [PtCl2(en)] yielded the corresponding platinum conjugates. The dialkylated thiourea gave an unstable complex, which was not included in the studies. The crystal structure of PT-ACRAMTU·MeOH has been determined. In the solid state, one axial position of the square-planar platinum coordination sphere is partially shielded by the bulky thiourea group, providing a strong rationale for the kinetic inertness of the compound. The cytotoxicity of the prototype, the two new conjugates, and cisplatin was assessed in ovarian (A2780, A2780/CP), lung (NCI-H460), and colon (RKO) cancer cell lines using clonogenic survival assays. The derivatives containing trialkylated thiourea groups showed activity similar or superior to cisplatin, with IC50 values in the low micromolar concentration range. The complex modified with the tetraalkylated (bulkiest) thiourea was significantly less active, possibly due to the greatly decreased rate of binding to nucleobase nitrogen (1H NMR spectroscopy), but was most efficient at overcoming cross resistance to cisplatin in A2780/CP. Possible consequences of the reported structural modifications for the mechanism of action of these agents are discussed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations ACRAMTU 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea - Boc t-butyl carbamate - dGuo 2-deoxyguanosine - dien N1-(2-aminoethyl)ethane-1,2-diamine - en ethane-1,2-diamine - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PT-ACRAMTU [PtCl(en)(ACRAMTU)](NO3)2 - TSP 3-(trimethylsilyl)propionate, sodium salt  相似文献   

16.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   

17.
Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer’s disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their size, composition, cellular binding sites and mechanism of action challenging and elusive. Furthermore, recent studies have suggested that synergistic effects between Aβ40 and Aβ42 alter both the formation and stability of various peptide oligomers as well as their cytotoxicity. These studies often utilized Aβ oligomers that were prepared in solution and at μM peptide concentrations. The current work was performed using physiological Aβ concentrations and single-molecule microscopy to follow peptide binding and association on primary cultured neurons. When the cells were exposed to a 1:1 mixture of nM Aβ40:Aβ42, significantly larger membrane-bound oligomers developed compared to those formed from either peptide alone. Fluorescence resonance energy transfer experiments at the single molecule level reveal that these larger oligomers contained both Aβ40 and Aβ42, but that the growth of these oligomers was predominantly by addition of Aβ42. Both pure peptides form very few oligomers larger than dimers, but either membrane bound Aβ40/42 complex, or Aβ40, bind Aβ42 to form increasingly larger oligomers. These findings may explain how Aβ42-dominant oligomers, suspected of being more cytotoxic, develop on the neuronal membrane under physiological conditions.  相似文献   

18.
Recent studies have suggested that variants of CYP46A1, encoding cholesterol 24-hydroxylase (CYP46), confer risk for Alzheimers disease (AD), a prospect substantiated by evidence of genetic association from several quantitative traits related to AD pathology, including cerebrospinal fluid (CSF) levels of the 42 amino-acid cleavage product of -amyloid (A42) and the tau protein. In the present study, these claims have been explored by the genotyping of previously associated markers in CYP46A1 in three independent northern European case-control series encompassing 1323 individuals and including approximately 400 patients with measurements of CSF A42 and phospho-tau protein levels. Tests of association in case-control models revealed limited evidence that CYP46A1 variants contributed to AD risk across these samples. However, models testing for potential effects upon CSF measures suggested a possible interaction of an intronic marker (rs754203) with age and APOE genotype. In stratified analyses, significant effects were evident that were restricted to elderly APOE 4 carriers for both CSF A42 (P=0.0009) and phospho-tau (P=0.046). Computational analyses indicate that the rs754203 marker probably does not impact the binding of regulatory factors, suggesting that other polymorphic sites underlie the observed associations. Our results provide an important independent replication of previous findings, supporting the existence of CYP46A1 sequence variants that contribute to variability in -amyloid metabolism.  相似文献   

19.
Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid-beta (A beta) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer's disease (AD). The molecular machinery for A beta generation, including APP, APP-C99 and beta-/gamma-secretases, are all enriched in autophagic vacuoles. The induction of autophagy can be vividly observed in the brain at early stages of sporadic AD and in an AD transgenic mouse model. Accumulated evidence has also demonstrated a neuroprotective role of autophagy in mediating the degradation of aggregated proteins that are causative of various neurodegenerative diseases. Autophagy is thus widely regarded as an intracellular hub for the removal of the detrimental A beta peptides and Tau aggregates. Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular A beta. The two faces of autophagy on the homeostasis of A beta place it in a very unique and intriguing position in AD pathogenesis. This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic approaches against autophagy-elicited AD.  相似文献   

20.
Alzheimer’s disease is characterised by the inappropriate death of brain cells and accumulation of the Aβ peptide in the brain. Thus, it is possible that there are fundamental differences between Alzheimer’s disease patients and healthy individuals in their abilities to clear Aβ from brain fluid and to protect neurons from Aβ toxicity. In the present study, we examined (1) the cytotoxicity of Alzheimer’s disease cerebrospinal fluid (CSF) compared to control CSF, (2) the ability of Alzheimer’s disease and control CSF to protect cells from Aβ toxicity and to promote cell-mediated clearance of Aβ and lastly (3) the effects of extracellular chaperones, normally found in CSF, on these processes. We show that the Alzheimer’s disease CSF samples tested were more toxic to cultured neuroblastoma cells than normal CSF. In addition, the Alzheimer’s disease CSF samples tested were less able to protect cells from Aβ-induced toxicity and less efficient at promoting macrophage-like cell uptake when compared to normal CSF. The addition of physiologically relevant concentrations of the extracellular chaperones, clusterin, haptoglobin and α2-macroglobulin into CSF protected neuroblastoma cells from Αβ1-42 toxicity and promoted Αβ1-42 uptake in macrophage-like cells. These results suggest that extracellular chaperones are an important element of a system of extracellular protein folding quality control that protects against Aβ toxicity and accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号