首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel 5,6,7,8-Tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one derivatives bearing a hydroxamic acid, 2-aminoanilide and hydrazide moieties as zinc-binding group (ZBG) were designed, synthesized and evaluated for the HDAC inhibition activity and antiproliferative activity. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds IVa, IVb, IXa and IXb exhibited significant anti-proliferative activity against the three cell lines tested compared to SAHA as a reference. Compound IVb is equipotent inhibitor for HDAC1 and HDAC2 as SAHA. It is evident that the presence of free hydroxamic acid group is essential for Zn binding affinity with maximal activity with a linker of aliphatic 6 carbons. Docking study results revealed that compound IVb could occupy the HDAC2 binding site and had the potential to exhibit antitumor activity through HDAC inhibition, which merits further investigation.  相似文献   

2.
Histone deacetylase (HDAC) is a clinically validated target for antitumor therapy. In order to increase HDAC inhibition and efficiency, we developed a novel series of saccharin hydroxamic acids as potent HDAC inhibitors. Among them, compounds 11e, 11m, 11p exhibited similar or better HDACs inhibitory activity compared with the approved drug SAHA. Further biological evaluation indicated that compound 11m had potent antiproliferative activities against MDA-MB-231 and PC-3.  相似文献   

3.
Histone deacetylase inhibitors (HDACIs) are effective small molecules in the treatment of human cancers. In our continuing efforts to develop novel N-hydroxyterephthalamide-based HDACIs, herein we report the design and development of a new class of N-hydroxybenzamide-based HDACIs. In this new class of analogs, we inserted an ethylene moiety in the linker and used indole as a part of the Y-shaped cap group. Biological characterization identified compounds 4o, 4p, 4q and 4t to show improved HDAC inhibition, while no isoform selectivity for HDACs was observed. These compounds also exhibited improved anti-proliferative activity against multiple cancer cell lines when compared to their parent compound and positive control SAHA.  相似文献   

4.
We describe herein the synthesis and characterization of a new class of histone deacetylase (HDAC) inhibitors derived from conjugation of a suberoylanilide hydroxamic acid-like aliphatic-hydroxamate pharmacophore to a nuclear localization signal peptide. We found that these conjugates inhibited the histone deacetylase activities of HDACs 1, 2, 6, and 8 in a manner similar to suberoylanilide hydroxamic acid (SAHA). Notably, compound 7b showed a threefold improvement in HDAC 1/2 inhibition, a threefold increase in HDAC 6 selectivity and a twofold increase in HDAC 8 selectivity when compared to SAHA.  相似文献   

5.
A series of dithiolethione derivatives was synthesized and the in vitro HDAC inhibitory activity was tested. The most active compounds, 1 and 2, exhibited an IC50 in nM range with a strong hyperacetylation of histone H4 in A549 cells. The HDAC inhibitory activity comparable to that of SAHA and the inhibition of A549 cell proliferation suggest that these compounds are worthy of further studies as potential anticancer agents.  相似文献   

6.
Several human diseases are associated with aberrant epigenetic pathways mediated by histone deacetylases (HDACs), especially HDAC6, a class IIb HDACs, which has emerged as an attractive target for neurodegenerative and autoimmune disease therapeutics. In a previous study, we developed the novel HDAC6-selective inhibitor 9a ((E)-N-hydroxy-4-(2-styrylthiazol-4-yl)butanamide) and showed that it has anti-sepsis activity in vivo. In this study, we conducted structure-activity relationship (SAR) studies to optimize the activity and selectivity of HDAC6, synthesizing its derivatives with various aliphatic linker sizes and cap structures. We identified 6u ((E)-N-hydroxy-3-(2-(4-fluorostyryl)thiazol-4-yl)propanamide), which has nanomolar inhibition activity and a 126-fold selectivity for HDAC6 over HDAC1. Through the docking analyses of 6u against HDAC subtypes, we revealed the importance of the optimal aliphatic linker size, as well as the electronic substituent effect and rigidity of the aryl cap group. Thus, we suggest a new rationale for the design of HDAC6-selective inhibitors.  相似文献   

7.
A series of hydroxamic acid-based HDACIs with 4-aminoquinazolinyl moieties as capping groups was profiled. Most compounds showed more potent HDACs inhibition activity than clinically used drug SAHA. Among them, compounds 5f and 5h selectively inhibited HDAC 1,2 over HDAC8, and showed strong activity in several cellular assays, not possessing significant toxicity to primary human cells and hERG inhibition. Strikingly, 5f possessed acceptable pharmacokinetic characteristics and exhibited significant antitumor activity in an A549 xenograft model study at well tolerated doses.  相似文献   

8.
Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski’s rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition.  相似文献   

9.
Hybrid antiestrogen/histone deacetylase (HDAC) inhibitors were designed by appending zinc binding groups to the 4-hydroxystilbene core of 4-hydroxytamoxifen. The resulting hybrids were fully bifunctional, and displayed high nanomolar to low micromolar IC50 values against both the estrogen receptor α (ERα) and HDACs in vitro and in cell-based assays. The hybrids were antiproliferative against ER+ MCF-7 breast cancer cells, with hybrid 28b possessing an improved activity profile compared to either 4-hydroxytamoxifen or SAHA. Hybrid 28b displayed gene expression patterns that reflected both ERα and HDAC inhibition.  相似文献   

10.
We report the design, synthesis, and biological evaluation of a new series of HDAC1 inhibitors using click chemistry. Compound 17 bearing a phenyl ring at meta-position was identified to show much better selectivity for HDAC1 over HDAC7 than SAHA. The compond 17 also showed better in vitro anticancer activities against several cancer cell lines than that of SAHA. This work could serve as a foundation for further exploration of selective HDAC inhibitors using the compound 17 molecular scaffold.  相似文献   

11.
12.
Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC50 values of 9.20 ± 0.96 μM on Hela cells and 5.91 ± 0.57 μM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.  相似文献   

13.
Several novel indirubin-based N-hydroxybenzamides, N-hydropropenamides and N-hydroxyheptanamides (4a-h, 7a-h, 10a-h) were designed using a fragment-based approach with structural features extracted from several previously reported HDAC inhibitors, such as SAHA (vorinostat), MGCD0103 (mocetinostat), nexturastat A and PXD-101 (belinostat). The biological results reveal that our compounds showed excellent cytotoxicity toward three common human cancer cell lines (SW620, PC-3 and NCI-H23) with IC50 values ranging from 0.09 to 0.007 µM. The cytotoxicity of the compounds was equipotent or even up to 10-times more potent than adriamycin and up to 205-times more potent than SAHA. Among the series of N-hydroxypropenamides, compounds 10a-d were the most potent HDAC inhibitors as well as cytotoxicity toward the cell lines tested. In addition, the strong inhibitory activites toward HDAC of our compounds were observed with IC50 values of below-micromolar range. Especially, compound 4a inhibited HDAC6 with an IC50 value of 29-fold lower than that against HDAC2 isoform. Representative compounds 4a and 7a were found to significantly arrest SW620 cells at G0/G1 phase. Compounds 7a and 10a were found to strongly induce apoptosis in SW620 cells. Docking studies revealed some important features affecting the selectivity against HDAC6 isoform. The results clearly demonstrate the potential of the indirubin-hydroxamic acid hybrids and these compounds should be very promising for further development.  相似文献   

14.
Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.  相似文献   

15.
Histone deacetylase (HDAC) inhibitions are known to elicit anticancer effects. We designed and synthesized several HDAC inhibitors. Among these compounds, compound 40 exhibited a more than 10-fold stronger inhibitory activity compared with that of suberoylanilide hydroxamic acid (SAHA) against each human HDAC isozyme in vitro (IC50 values of 40: HDAC1, 0.0038 μM; HDAC2, 0.0082 μM; HDAC3, 0.015 μM; HDAC8, 0.0060 μM; HDAC4, 0.058 μM; HDAC9, 0.0052 μM; HDAC6, 0.058 μM). The dose of the administered HDAC inhibitors that contain hydroxamic acid as the zinc-binding group may be reduced by 40. Because the carbostyril subunit is a time-tested structural component of drugs and biologically active compounds, 40 most likely exhibits good absorption, distribution, metabolism, excretion, and toxicity (ADMET). Thus, compound 40 is expected to be a promising therapeutic agent or chemical tool for the investigation of life process.  相似文献   

16.
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50?=?0.90?μM). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50?μM. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent.  相似文献   

17.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized two series of novel N-hydroxybenzamides incorporating 2-oxoindolines (4ag, 6ag). Biological evaluation showed that these benzamides potently inhibited HDAC2 with IC50 values in sub-micromolar range. In three human cancer cell lines the synthesized compounds were up to 4-fold more cytotoxic than SAHA. Docking experiments indicated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA. Our present results demonstrate that these novel and simple N-hydroxybenzamides are potential for further development as anticancer agents and further investigation of similarly simple N-hydroxybenzamides should be warranted to obtain more potent HDAC inhibitors.  相似文献   

18.
Abstract

To develop potent histone deacetylase inhibitors as antitumor agents, structural modification was performed. The synthesized molecules were tested by enzymatic inhibition assay and anti-proliferation assay. Several molecules show improved activities in the enzymatic inhibition assay. However, in the MTT assays, all these derived molecules have limited performance compared with SAHA. The IC50 values of molecule ((S)-N-(6-(hydroxyamino)-6-oxohexyl)-4-(3-(2-oxo-1-phenyl-2-((3-(trifluoromethyl)phenyl)amino)ethyl)ureido)benzamide, L8) which has the best enzymatic inhibition activity (with an IC50 value of 11.7?nm and 967?nm against Hela nucleus extract and HDAC8, respectively) were calculated compared with SAHA. Molecular docking was performed to predict the binding mode of molecule L8 in the active site of HDAC2 and HDAC8. Hydrophobic interaction, chelate binding, electrostatic attraction and H-bond interaction in combination make contribution to the ligand–receptor interactions.  相似文献   

19.
Although histone deacetylase inhibitors (HDACi) have shown promising antitumor effects in specific types of blood cancer, their effects on solid tumors are limited. Previously, we developed LMK235 (5), a class I and class IIb preferential HDACi with chemosensitizing effects on breast cancer, ovarian cancer and HNSCC. Based on its promising effects on solid tumor cells, we modified the cap group of 5 to improve its anticancer activity. The tri- and dimethoxy-phenyl substituted compounds 13a and 13d turned out to be the most potent HDAC inhibitors of this study. The isoform profiling revealed a dual HDAC2/HDAC6 inhibition profile, which was confirmed by the acetylation of α-tubulin and histone H3 in Cal27 and Cal27CisR. In combination with cisplatin, both compounds enhanced the cisplatin-induced cytotoxicity via caspase-3/7 activation. The effect was more pronounced in the cisplatin resistant subline Cal27CisR. The pretreatment with 13d resulted in a complete resensitisation of Cal27CisR with IC50 values in the range of the parental cell line. Therefore, 13d may serve as an epigenetic tool to analyze and modulate the cisplatin resistance of solid tumors.  相似文献   

20.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号