首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial extractions of pyridaben, a mitochondrial complex I (MC-I) inhibitor, is well correlated with blood flow. Based on the synthesis and characterization of pyridaben analogue 2-tert-butyl-5-[2-(2-[18F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([18F]FP2OP), this study assessed its potential to be developed as myocardial perfusion imaging (MPI) agent.Methods: The tosylate labeling precursor 2-(2-(4-(tert-butyl-5-chloro-6-oxo-1,6-dihydro-pyridazin-4-yloxymethyl)benzyloxy)ethoxy)ethyl ester (OTs-P2OP) and the nonradioactive 2-tert-butyl-5-[2-(2-[19F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([19F]FP2OP) were synthesized and characterized by IR, 1H NMR, 13C NMR and MS analysis. By substituting tosyl of precursor OTs-P2OP with 18F, the radiolabeled complex [18F]FP2OP was prepared and further evaluated for its in vitro physicochemical properties, in vivo biodistribution, the metabolic stability in mice, ex vivo autoradiography and cardiac PET/CT imaging.Results: Starting with [18F]F? Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FP2OP was about 100 min, with final high-performance liquid chromatography purification included. Typical decay-corrected radiochemical yield stayed at 41 ± 5.3%, the radiochemical purity, 98% or more. Biodistribution in mice showed that the heart uptake of [18F]FP2OP was 41.90 ± 4.52%ID/g at 2 min post-injection time, when the ratio of heart/liver, heart/lung and heart/blood reached 6.83, 9.49 and 35.74, respectively. Lipophilic molecule was further produced by metabolized [18F]FP2OP in blood and urine at 30 min. Ex vivo autoradiography demonstrates that [18F]FP2OP may have high affinity with MC-I and that can be blocked by [19F]FP2OP or rotenone (a known MC-I inhibitor). Cardiac PET images were obtained in a Chinese mini-swine at 5, 15, 30 and 60 min post-injection time with high quality.Conclusion: [18F]FP2OP was synthesized with high radiochemical yield. The promising biological properties of [18F]FP2OP suggest high potential as MPI agent for positron emission tomography in the future.  相似文献   

2.
Three new 18F labeled fluoroalkyl tyrosine derivatives, O-(2-[18F]fluoroethyl)-α-methyltyrosine (FEMT, [18F]2), O-(2-[18F]fluoroethyl)-2-l-azatyrosine (FEAT, [18F]3), O-(2-[18F]fluoroethyl)-l-tyrosineamide (FETA, [18F]4) have been synthesized and radiofluorinated with 5–34% decay-corrected yield. In vitro studies were carried out in U-138 MG human glioblastoma. Cellular uptake of new tracers was compared to clinically utilized imaging agent O-(2-[18F]fluoroethyl)-l-tyrosine (FET, [18F]1). The uptake of tracers followed the order of FET ([18F]1) > FEAT([18F]3) > FEMT ([18F]2)  FETA ([18F]4).  相似文献   

3.
This article reported the synthesis and bioevaluation of two [18F] labeled benzimidazole derivatives, 4-(5-(2-[18F] fluoro-4-nitrobenzamido)-1-methyl-1H-benzimidazol-2-yl) butanoic acid ([18F] FNBMBBA, [18F]a1) and 3-(2-fluoroethyl)-7-methyl-2-propyl-3H-benzimidazole-5-carboxylic acid ([18F] FEMPBBA, [18F]b1) for PET tumor imaging. The preparation [18F] FEMPBBA was completed in 1 h with overall radiochemical yield of 50–60% (without decay corrected). Biodistribution assay in S180 tumor bearing mice of both compounds were carried out, and the results are both meaningful. [18F] FEMPBBA which can be taken as a revision of [18F] FNBMBBA got an excellent result, and has significant advantages in some aspects compared with L-[18F] FET and [18F]-FDG in the same animal model, especially in tumor/brain uptake ratio. The tumor/brain uptake ratio of [18F] FEMPBBA gets to 4.81, 7.15, and 9.8 at 30 min, 60 min and 120 min, and is much higher than that of L-[18F] FET (2.54, 2.92 and 2.95) and [18F]-FDG (0.61, 1.02, 1.33) at the same time point. The tumor/muscle and tumor/blood uptake ratio of [18F] FEMPBBA is also higher than that of L-[18F] FET at 30 min and 60 min. This result indicates compound [18F] FEMPBBA is a promising radiotracer for PET tumor imaging.  相似文献   

4.
Two new benzodioxane derivatives were synthesized as candidates to image the serotonin 4 receptors by positron emission tomography (PET) and radiolabeled with fluorine-18 via a two-step procedure. Competition binding assays demonstrated that MNI-698 and MNI-699 had sub-nanomolar binding affinities against rat striatal 5-HT4 receptors (Ki of 0.20 and 0.07 nM, respectively). PET imaging in rhesus monkey showed that the regional brain distribution of [18F]MNI-698 and [18F]MNI-699 were consistent with the known densities of 5-HT4 in brain. [18F]MNI-698 and [18F]MNI-699 are among the first fluorine-18 radiotracers developed for imaging the 5-HT4 receptors in vivo and are currently under preclinical investigation in primates for future human use.  相似文献   

5.
We report the synthesis and evaluation of a series of fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives as potential σ1 receptor ligands. In vitro competition binding assays showed that 1-(1,3-benzodioxol-5-ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (6) exhibits low nanomolar affinity for σ1 receptors (Ki = 1.85 ± 1.59 nM) and high subtype selectivity (σ2 receptor: Ki = 291 ± 111 nM; Kiσ2/Kiσ1 = 157). [18F]6 was prepared in 30–50% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic 18F? substitution of the corresponding tosylate precursor. The log DpH 7.4 value of [18F]6 was found to be 2.57 ± 0.10, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiotracers in organs known to contain σ1 receptors, including the brain, lungs, kidneys, heart, and spleen. Administration of haloperidol 5 min prior to injection of [18F]6 significantly reduced the concentration of radiotracers in the above-mentioned organs. The accumulation of radiotracers in the bone was quite low suggesting that [18F]6 is relatively stable to in vivo defluorination. The ex vivo autoradiography in rat brain showed high accumulation of radiotracers in the brain areas known to possess high expression of σ1 receptors. These findings suggest that [18F]6 is a suitable radiotracer for imaging σ1 receptors with PET in vivo.  相似文献   

6.
The 5-HT1AR partial agonist PET radiotracer, [11C]CUMI-101, has advantages over an antagonist radiotracer as it binds preferentially to the high affinity state of the receptor and thereby provides more functionally meaningful information. The major drawback of C-11 tracers is the lack of cyclotron facility in many health care centers thereby limiting widespread clinical or research use. We identified the fluoroethyl derivative, 2-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (FECUMI-101) (Ki = 0.1 nM; Emax = 77%; EC50 = 0.65 nM) as a partial agonist 5-HT1AR ligand of the parent ligand CUMI-101. FECUMI-101 is radiolabeled with F-18 by O-fluoroethylation of the corresponding desmethyl analogue (1) with [18F]fluoroethyltosylate in DMSO in the presence of 1.6 equiv of K2CO3 in 45 ± 5% yield (EOS). PET shows [18F]FECUMI-101 binds specifically to 5-HT1AR enriched brain regions of baboon. The specificity of [18F]FECUMI-101 binding to 5-HT1AR was confirmed by challenge studies with the known 5-HT1AR ligand WAY100635. These findings indicate that [18F]FECUMI-101 can be a viable agonist ligand for the in vivo quantification of high affinity 5-HT1AR with PET.  相似文献   

7.
Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F]1) a specific IGF-1R inhibitor was performed. [18F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochemical purity and specific activity (1–2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]1 can be a potential PET tracer for monitoring IGF-1R.  相似文献   

8.
The 2-[18F]fluoro-3-pent-4-yn-1-yloxypyridine ([18F]FPyKYNE) analog of the potent non-peptide angiotensin II type 1 receptor (AT1R) blocker losartan was produced via click chemistry linking [18F]FPyKYNE to azide-modified tetrazole-protected losartan followed by TFA deprotection. Preliminary small animal imaging with positron emission tomography (PET) in rats displayed high uptake in the kidneys with good contrast to surrounding tissue. Rat metabolism displayed the presence of 23% unchanged tracer in plasma at 30 min. Upon co-administration with AT1R blocker candesartan (2.5, 5 and 10 mg/kg), a dose-dependent reduction (47–65%) in tracer uptake was observed in the kidney, while no difference was observed following AT2R blocker PD123,319 (5 mg/kg), indicating binding selectivity for AT1R over AT2R and potential for imaging AT1R using PET.  相似文献   

9.
PR04.MZ 8-(4-fluoro-but-2-ynyl)-3-p-tolyl-8-aza-bicyclo[3.2.1]octane-2-carboxylic acid methyl ester (1) and LBT999 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester (2) are selective dopamine reuptake inhibitors, derived from cocaine. Compounds 1 and 2 were labelled with fluorine-18 at their terminally fluorinated N-substituents employing microwave enhanced direct nucleophilic fluorination. K[18F]F? Kryptofix®222 cryptate, tetrabutyl ammonium [18F]fluoride and caesium [18F]fluoride were compared as fluoride sources under conventional and microwave enhanced conditions. Fluorination yields were remarkably increased under microwave irradiation for all three fluoride salts. Radiochemically pure (>98%) [18F]PR04.MZ (0.95–1.09 GBq, 42–135 GBq/μmol) was obtained within 34–40 min starting from 3.0 GBq [18F]fluoride ion in 32–36% non-decay-corrected overall yield using K[18F]F?Kryptofix®222 cryptate in MeCN.  相似文献   

10.
Galactosylated chitosan (GC) was prepared by reacting lactobionic acid with water-soluble chitosan. GC was labeled with fluorine-18 by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. After rapid purification with HiTrap desalting column, [18F]FB-GC was obtained with high radiochemical purity (>97%) determined by radio-HPLC. The total reaction time for [18F]FB-GC was about 150 min. Typical decay-corrected radiochemical yield was about 4–8%. Ex vivo biodistribution in normal mice showed that [18F]FB-GC had moderate activity accumulation in liver with very good retention (11.13 ± 1.63, 10.97 ± 1.90 and 10.77 ± 0.95% ID/g at 10, 60, 120 min after injection, respectively). The other tissues except kidney showed relative low radioactivity accumulation. The high liver/background ratio affords promising biological properties to get clear images. The specific binding of this radiotracer to the ASGP receptor was confirmed by blocking experiment in mice. Compared with the non-blocking group the hepatic uptake of [18F]FB-GC significantly declined in all selected time points. The better liver retention properties of [18F]FB-GC than that of albumin based imaging agents may improve imaging quality and simplify pharmacokinetic model of liver function in the future application with PET imaging.  相似文献   

11.
A new dopamine transporter (DAT) ligand, (E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane (FE-PE2I, 6), derived from PE2I (1), was prepared and found to be a potent inhibitor of rodent DAT in vitro. Compound 6 was radiolabelled with fluorine-18 (t1/2 = 109.8 min) for PET studies in monkeys. In vivo PET measurements showed a regional distribution in brain that corresponds to the known distribution of DAT. This binding was specific, reversible and the kinetics of [18F]6 binding in brain were faster than for its lead compound, [11C]1. The possible presence of a hydroxymethyl-radiometabolite formed by oxidation in the 3β-benzylic position of [18F]6 warrants further detailed evaluation of the metabolism of [18F]6. [18F]6 is a potential radioligand for imaging DATs in the human brain with PET.  相似文献   

12.
Two F-18 labeled fluoroarylvaline derivatives, methyl 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoate ([18F]1, [18F]MFNBMB) and its corresponding acid 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoic acid ([18F]2, [18F]FNBMBA), have been designed and synthesized, respectively, by our team. Meanwhile, we research on their biodistributions in mice model bearing S 180 tumor. Furthermore, we also carried out the biological evaluations of 2-[18F]fluorodeoxyglucose ([18F]FDG) and O-2-[18F]fluoroethyl-l-tyrosine (l-[18F]FET) in the same model for comparison with our targeting molecules [18F]1 and [18F]2. Excitingly, the tumor/blood (T/Bl) and tumor/brain (T/Br) ratios were 2.91, 7.06 at 30 min, 3.44, 5.61 at 60 min post injection for [18F]1, 2.32, 13.30 for [18F]2 at 30 min post injection, which were obviously superior to [18F]FDG and l-[18F]FET in the same model and demonstrated that [18F]1 and [18F]2, especially [18F]2, were potential PET imaging agents for tumor detection.  相似文献   

13.
N-(Chloro-3-methoxyphenyl)-2-picolinamide (3, ML128, VU0361737) is an mGlu4 positive allosteric modulator (PAM), which is potent and centrally penetrating. 3 is also the first mGlu4 PAM to show efficacy in a preclinical Parkinson disease model upon systemic dosing. As a noninvasive medical imaging technique and a powerful tool in neurological research, positron emission tomography (PET) offers a possibility to investigate mGlu4 expression in vivo under physiologic and pathological conditions. We synthesized a carbon-11 labeled ML128 ([11C]3) as a PET radiotracer for mGlu4, and characterized its biological properties in Sprague Dawley rats. [11C]3 was synthesized from N-(4-chloro-3-hydroxyphenyl)-2-picolinamide (2) using [11C]CH3I. Total synthesis time was 38 ± 2.2 min (n = 7) from the end of bombardment to the formulation. The radioligand [11C]3 was obtained in 27.7 ± 5.3% (n = 5) decay corrected radiochemical yield based on the radioactivity of [11C]CO2. The radiochemical purity of [11C]3 was >99%. Specific activity was 188.7 ± 88.8 GBq/mol (n = 4) at the end of synthesis (EOS).PET images were conducted in 20 normal male Sprague Dawley rats including 11 control studies, 6 studies blocking with an mGlu4 modulator (4) to investigate specificity and 3 studies blocking with an mGlu5 modulator (MTEP) to investigate selectivity. These studies showed fast accumulation of [11C]3 (peak activity between 1–3 min) in several brain areas including striatum, thalamus, hippocampus, cerebellum, and olfactory bulb following with fast washout. Blocking studies with the mGlu4 modulator 4 showed 22–28% decrease of [11C]3 accumulation while studies of selectivity showed only minor decrease supporting good selectivity over mGlu5. Biodistribution studies and blood analyses support fast metabolism. Altogether this is the first PET imaging ligand for mGlu4, in which the labeled ML128 was used for imaging its in vivo distribution and pharmacokinetics in brain.  相似文献   

14.
The syntheses of new nitroimidazole compounds using silicon–[18F]fluorine chemistry for the potential detection of tumor hypoxia are described. [18F]silicon-based compounds were synthesized by coupling 2-nitroimidazole with silyldinaphtyl or silylphenyldi-tert-butyl groups and labeled by fluorolysis or isotopic exchange. Dinaphtyl compounds (6, 10) were labeled in 56–71% yield with a specific activity of 45 GBq/μmol, however these compounds ([18F]7 and [18F]11) were not stable in plasma. Phenyldi-tert-butyl compounds were labeled in 70% yield with a specific activity of 3 GBq/μmol by isotopic exchange, or in 81% yield by fluorolysis of siloxanes with a specific activity of 45 GBq/μmol. The labeled compound [18F]18 was stable in plasma and excreted by the liver and kidneys in vivo. In conclusion, the fluorosilylphenyldi-tert-butyl (SiFA) group is more stable in plasma than fluorosilyldiphenyl moiety. Thus, compound [18F]18 is suitable for further in vivo assessments.  相似文献   

15.
Four novel thiazole containing ABP688 derivatives were synthesized and evaluated for their binding affinity towards the metabotropic glutamate receptor subtype 5 (mGluR5). (E)-3-((2-(Fluoromethyl)thiazol-4-yl)ethynyl)cyclohex-2-enone O-methyl oxime (FTECMO), the ligand with the highest binding affinity (Ki = 5.5 ± 1.1 nM), was labeled with fluorine-18. [18F]-FTECMO displayed optimal lipophilicity (log DpH7.4 = 1.6 ± 0.2) and high stability in rat and human plasma as well as sufficient stability in rat liver microsomes. In vitro autoradiography with [18F]-FTECMO revealed a heterogeneous and displaceable binding in mGluR5-rich brain regions. PET imaging with [18F]-FTECMO in Wistar rats, however, showed low brain uptake. Uptake of radioactivity into the skull was observed suggesting in vivo defluorination. Thus, although [18F]-FTECMO is an excellent ligand for the detection of mGluR5 in vitro, its in vivo characteristics are not optimal for the imaging of mGluR5 in rats in vivo.  相似文献   

16.
A new synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine [18F]FET was developed using a NanoTek® microfluidic synthesis system (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, reaction time, concentration of the labeling precursor, and the applied volume ratio between the labeling precursor and [18F]fluoride. [18F]FET was obtained after HPLC purification with 50% decay-corrected radiochemical yield starting from as little as 40 μg of labeling precursor. Small animal PET studies in EMT-6 tumor bearing mice showed radioactivity accumulation in the tumor (SUV60min 1.21 ± 0.2) resulting in an slightly increasing tumor-to-muscle ratio over time.  相似文献   

17.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

18.
Imaging of poly (ADP-ribose) polymerase-1 (PARP-1) expression in vivo is a potentially powerful tool for developing PARP-1 inhibitors for drug discovery and patient care. We have synthesized several derivatives of benzimidazole carboxamide as PARP-1 inhibitors, which can be 18F-labeled easily for positron emission tomographic (PET) imaging. Of the compounds synthesized, 12 had the highest inhibition potency for PARP-1 (IC50 = 6.3 nM). [18F]12 was synthesized under conventional conditions in high specific activity with 40–50% decay-corrected yield. MicroPET studies using [18F]12 in MDA-MB-436 tumor-bearing mice demonstrated accumulation of [18F]12 in the tumor that was blocked by olaparib, suggesting that the uptake of [18F]12 in the tumor is specific to PARP-1 expression.  相似文献   

19.
Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [18F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [18F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 × 105 cells. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratio of 12:1 at 30 min post injection. In this model, amino acid syn-[18F]FACBC 12 is a promising metabolically based radiotracer for positron emission tomography brain tumor imaging.  相似文献   

20.
The aim of this project was to synthesize and evaluate three novel fluorine-18 labeled derivatives of propargyl amine as potential PET radioligands to visualize monoamine oxidase B (MAO-B) activity.The three fluorinated derivatives of propargyl amine ((S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)-pent-4-en-2-amine (5), (S)-N-(1-fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (10) and (S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (15)) were synthesized in multi-step organic syntheses. IC50 values for inhibition were determined for compounds 5, 10 and 15 in order to determine their specificity for binding to MAO-B. Compound 5 inhibited MAO-B with an IC50 of 664 ± 48.08 nM. No further investigation was carried out with this compound. Compound 10 inhibited MAO-B with an IC50 of 208.5 ± 13.44 nM and compound 15 featured an IC50 of 131.5 ± 0.71 nM for its MAO-B inhibitory activity. None of the compounds inhibited MAO-A activity (IC50 > 2 μM).The fluorine-18 labeled analogues of the two higher binding affinity compounds (10 and 15) (S)-N-(1-[18F]fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (16) and (S)-1-[18F]fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (18) were both prepared from the corresponding precursors 9A, 9B and 14A, 14B by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography experiments on human postmortem brain tissue sections were performed with 16 and 18. Only compound 18 demonstrated a high selectivity for MAO-B over MAO-A and was, therefore, chosen for further examination by PET in a cynomolgus monkey.The initial uptake of 18 in the monkey brain was 250% SUV at 4 min post injection. The highest uptake of radioactivity was observed in the striatum and thalamus, regions with high MAO-B activity, whereas lower levels of radioactivity were detected in the cortex and cerebellum. The percentage of unchanged radioligand 18 was 30% in plasma at 90 min post injection.In conclusion, compound 18 is a selective inhibitor of MAO-B in vitro and demonstrated a MAO-B specific binding pattern in vivo by PET in monkey. It can, therefore, be considered as a candidate for further investigation in human by PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号