首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.  相似文献   

2.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   

3.
A series of compounds incorporating regioisomeric phenylethynylbenzenesulfonamide moieties has been investigated for the inhibition of four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, IX and XII. Inhibition between the low nanomolar to the milliomolar range has been observed against them, with several low nanomolar and tumor-CA selective inhibitors detected. The position of the sulfamoyl group with respect to the alkyne functionality, and the nature of the moieties substituting the second aromatic ring were the principal structural features influencing CA inhibition. The para-sulfamoyl-substituted derivatives were effective inhibitors of CA IX and XII, the meta-substituted regioisomers of CA I, IX and XII, whereas the ortho-substituted sulfonamides were weak inhibitors of CA I, II and IX, but inhibited significantly CA XII.  相似文献   

4.
Isocoumarins, isomeric to comarins which act as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, were investigated for the first time as inhibitors of this enzyme. A series of 3-substituted and 3,4-disubstituted isocoumarins incorporating phenylhydrazone, 1-phenyl-pyrazole and pyrazolo-substituted pyrimidine trione/thioxo-pyrimidine dione moieties were investigated for their interaction with four human (h) CA isoforms, hCA I, II, IX and XII, known to be important drug targets. hCA I and II were not inhibited by these compounds, whereas hCA IX and XII were inhibited in the low micromolar range by the less bulky derivatives. The inhibition constants ranged between 2.7–78.9 µM against hCA IX and of 1.2–66.5 µM against hCA XII. As for the coumarins, we hypothesise that the isocoumarins are hydrolysed by the esterase activity of the enzyme with formation of 2-carboxy-phenylacetic aldehydes which act as CA inhibitors. Isocoumarins represent a new class of CA inhibitors.  相似文献   

5.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (K(I)s in the range of 1.5-5.7 microM), two derivatives were strong hCA II inhibitors (K(I)s in the range of 15-16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160-1950 nM and hCA XII with inhibition constants in the range 1.2-413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

6.
Reaction of cyanuryl chloride with d,l-amino acids and amino alcohols afforded a new series of triazinyl-substituted benzenesulfonamides incorporating amino acyl/hydroxyalkyl-amino moieties. Inhibition studies of physiologically relevant human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA I, II, IX, XII and XIV with these compounds are reported. They showed moderate-weak inhibition of the cytosolic, offtarget isozymes CA I and II, but many of them were low nanomolar inhibitors of the transmembrane, tumor-associated CA IX and XII (and also of CA XIV). The X-ray crystal structure of two of these compounds in adduct with CA II allowed us to understand the features associated with this strong inhibitory properties and possibly also their selectivity. Two of these compounds were also investigated for the inhibition of other human isoforms, that is, hCA IV, VA, VB, VI, VII and XIII, as well as inhibitors of the fungal pathogenic CAs Nce103 (Candida albicans) and Can2 (Cryptococcus neoformans), showing interesting activity. The 1,3,5-triazinyl-substituted benzenesulfonamides constitute thus a class of compounds with great potential for obtaining inhibitors targeting both α-class mammalian, tumor-associated, and β-class from pathogenic organisms CAs.  相似文献   

7.
A series of coumarins incorporating tert-butyl-dimethylsilyloxy- or allyoxy- moieties in positions 4-, 6 or 7 of the heterocyclic ring have been synthesized and then converted to the corresponding 2-thioxo-coumarins. Other derivatives incorporating hydroxyethyloxy-, tosylethoxy- and 2-fluroethyloxy- moieties in position 7 of the coumarin ring were synthesized together with derivatives of 4-methyl-7-amino coumarin incorporating acetamido, 3,5-dimethylphenylureido- and tert-butyloxycarbonylamido functionalities. All these compounds were assayed as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The human (h) cytosolic isoforms hCA I and II were weakly inhibited (hCA I) or not inhibited at all (hCA II) by these (thioxo)coumarins whereas the tumor-associated transmembrane isoforms hCA IX and XII were inhibited with efficiencies from the submicromolar to the low micromolar range by many of these derivatives. The structure-activity relationship for these classes of less investigated CA inhibitors are delineated, with the potential of using them as leads to obtain isoform-selective inhibitors with excellent affinity for CA IX and XII (validated antitumor targets) which do not significantly inhibit the cytosolic offtarget isoforms hCA I and II.  相似文献   

8.
A new series of aromatic benzenesulfonamides incorporating 1,3,5-triazine moieties in their molecules is reported. This series was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide or 4-aminoethylbenzenesulfonamide. The prepared dichlorotriazinyl-benzenesulfonamides were subsequently derivatized by reacting them with various nucleophiles, such as ammonia, hydrazine, primary and secondary amines, amino acid derivatives or phenol. The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumour-associated hCA IX. The new compounds inhibited hCA I with inhibition constants in the range of 31-8500 nM, hCA II with inhibition constants in the range of 14-765 nM and hCA IX with inhibition constants in the range of 1.0-640 nM. Structure-activity relationship was straightforward and rather simple in this class of CA inhibitors, with the compounds incorporating compact moieties at the triazine ring (such as amino, hydrazino, ethylamino, dimethylamino or amino acyl) being the most active ones, and the derivatives incorporating such bulky moieties (n-propyl, n-butyl, diethylaminoethyl, piperazinylethyl, pyridoxal amine or phenoxy) being less effective hCA I, II and IX inhibitors. Some of the new derivatives also showed selectivity for inhibition of hCA IX over hCA II (selectivity ratios of 23.33-32.00), thus constituting excellent leads for the development of novel approaches for the management of hypoxic tumours.  相似文献   

9.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

10.
A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates.  相似文献   

11.
A series of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides possessing various 2-, 3- or 4- substituted phenyl groups with methyl-, halogeno- and methoxy-functionalities, or a perfluorophenyl moiety, has been derivatized by reaction with 2,4,6-trimethylpyrylium perchlorate. The new sulfonamides were evaluated as inhibitors of four mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, that is, CA I, II (cytosolic), CA IX and XII (transmembrane, tumor-associated forms). Excellent inhibitory activity was observed against hCA IX with most of these sulfonamides, and against hCA XII with some of the new compounds. These compounds were generally less effective inhibitors of hCA II. Being membrane impermeant, these positively-charged sulfonamides are interesting candidates for targeting the tumor-associated CA IX and XII, as possible diagnostic tools or therapeutic agents.  相似文献   

12.
The inhibition of the two transmembrane, tumor-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1) of human origin, hCA IX and XII, with a library of aromatic and heteroaromatic sulfonamides has been investigated. Most of them were sulfanilamide, homosulfanilamide, and 4-aminoethyl-benzenesulfonamide derivatives, to which tails that should induce diverse physico-chemical properties have been attached at the amino moiety, whereas several of these compounds were derived from metanilamide, benzene-1,3-disulfonamide or the 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides. The tails were of the alkyl/aryl-carboxamido/sulfonamido-, ureido or thioureido type. Against hCA IX the investigated compounds showed inhibition constants in the range of 3-294 nM, whereas against hCA XII in the range of 1.9-348 nM, respectively. The best hCA IX inhibitors were ureas/thioureas incorporating 4-aminoethyl-benzenesulfonamide and metanilamide moieties. The best hCA XII inhibitors were 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides incorporating 5-acylamido or 5-arylsulfonylamido moieties. These compounds also inhibited appreciably the cytosolic isozymes hCA I and II, but some selectivity for the transmembrane, tumor-associated isozymes was observed for some of them, which is an encouraging result for the design of novel therapies targeting hypoxic tumors, in which these carbonic anhydrases are highly overexpressed.  相似文献   

13.
Sulfocoumarins behave as interesting inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Here, we report a new series of 7-substituted derivatives which were obtained by the click chemistry approach from 7-propargyloxy-sulfocoumarin and aryl azides incorporating halogens, hydroxy, methoxy and carboxyl moieties in their molecules. The new compounds were screened for the inhibition on four physiologically relevant human CA (hCA) isoforms, the cytosolic hCA I and II and the transmembrane tumor-associated hCA IX and XII. The new compounds did not inhibit the cytosolic isoforms but were low nanomolar inhibitors of the tumor-associated ones hCA IX and XII.  相似文献   

14.
Reaction of 6-/7-hydroxycoumarin with metronidazole afforded conjugates which incorporate two interesting chemotypes which may inhibit carbonic anhydrases (CAs, EC 4.2.1.1) due to the presence of the coumarin moiety and possess radiosensitizing effects due to the presence of the nitroazole. Another dual action compound, which may act both as CA inhibitor as well as monocarboxylate transporter inhibitor, is 3-cyano-7-hydroxy-coumarin. These compounds have been investigated as inhibitors of 11 human CA isoforms. Submicromolar inhibition was observed against hCA VA, hCA VB, hCA VI, hCA VII, hCA IX, hCA XII and hCA XIV, whereas isoforms hCA I, II and XIII were not inhibited by these compounds. These coumarins thus act as isoform-selective CA inhibitors with the possibility to target isoforms involved in pathologies such as obesity (CA VA/VB) or cancer (CA IX and XII) without inhibiting the physiologically dominant, highly abundant hCA I and II.  相似文献   

15.
Two series of disubstituted coumarins incorporating ether and acetyl/propionyl moieties in positions 6,7- and 7,8- of the heterocyclic ring were synthesized investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). All these coumarins were very weak or ineffective as inhibitors of the housekeeping, offtarget isoforms CA I and II. The 6,7-disubstituted series showed ineffective inhibition also for the transmembrane tumor-associated isoforms CA IX and XII, whereas the corresponding isomeric 7,8-disubstituted coumarins showed nanomolar/subnanomolar inhibition of CA IX/XII. The nature and position of the groups substituting the coumarin ring in the 7,8-positions greatly influenced CA inhibitory properties, with C1-C4 alkyl ethers being the most effective inhibitors.  相似文献   

16.
17.
A series of heterocyclic benzenesulfonamides incorporating 2-mercapto-3H-quinazolin-4-one tails were prepared by condensation of substituted anthranilic acids with 4-isothiocyanato-benzenesulfonamide. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (trans-membrane, tumor-associated enzymes). They acted as medium potency inhibitors of hCA I (KIs of 81.0–3084 nM), being highly effective as hCA II (KIs in the range of 0.25–10.8 nM), IX (KIs of 3.7–50.4 nM) and XII (KIs of 0.60–52.9 nM) inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of three isoforms (CA II, IX and XII) is dysregulated.  相似文献   

18.
Abstract

A series of coumarins and benzocoumarins incorporating methyl and hydroxyl moieties in the heterocyclic ring were investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). These coumarins were very weak or ineffective as inhibitors of the house-keeping, offtarget isoforms CA I and II, but showed effective, submicromolar inhibition of the transmembrane, tumor-associated isoforms CA IX and to a slightly less extent, CA XII. The nature and position of the groups substituting the coumarin ring influenced CA inhibitory properties. 4-Methyl-5,7-dihydroydroxycoumarin showed KIs >200?µM against CA I and II, of 0.19?µM against CA IX and of 6.4?µM against CA XII, being thus a selective, efficient inhibitor for the tumor-associated over cytosolic CA isoforms. These compounds are interesting leads for designing isoform-selective enzyme inhibitors.  相似文献   

19.
A series of twenty four hydroxy-trifluoromethylpyrazoline-carbonyl-1,2,3-triazoles and four hydrazones bearing benzenesulfonamide moieties was obtained by condensation of carboxyhydrazides with substituted 1,3-diketones. All the newly synthesized compounds were investigated as inhibitors of physiologically and pharmacologically relevant human (h) carbonic anhydrsae (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-assosciated isoforms hCA IX and XII. These compounds exhibited excellent CA inhibitory potency against the four CA isoenzymes as compared to clinically used reference drug acetazolamide (AAZ). Some compounds bearing bulkier group at C-5′ position of 1,2,3-triazoles ring were weaker inhibitors of hCA I. Inhibition assay against hCA II indicates, that several derivatives exhibited upto 27-fold more effective inhibitory activity compared to AAZ. Five of the assayed compounds displayed low nanomolar potency (Ki ≤ 10 nM) against hCA IX, whereas five compounds were found to be endowed with excellent inhibitory potencies (Ki 5 nM) against hCA XII. The biological activity profile presented herein will be useful for designing new leads and provide candidates for preclinical investigations.  相似文献   

20.
A series of diazenylbenzenesulfonamides, azo-dye derivatives of sulfanilamide or metanilamide incorporating phenol and amine moieties, were tested for inhibition of the tumor-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1), CA IX and XII. These compounds showed moderate-low inhibitory activities against the cytosolic isoforms CA I and II (offtargets) and excellent, low nanomolar inhibitory activity against the transmembrane CA IX and XII (KIs in the range of 3.5–63 nM against CA IX and 5.0–69.4 nM against CA XII, respectively). The selectivity ratio for inhibiting the tumor-associated CA IX over the offtarget CA II was in the range of 15–104 for these diazenylbenzenesulfonamides, making them among the most isoform-selective inhibitors targeting tumor-associated CAs (over the ubiquitous CA II). Since CA IX/XII were recently shown to be both therapeutic and diagnostic targets for hypoxic solid tumors overexpressing these proteins, such compounds held promise for the management of hypoxic tumors, which are largely non-responsible to classical chemo- and radio-therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号