首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is not known. Previously we reported that Jak3 interactions with adapter protein p52ShcA (Shc) facilitate mucosal homeostasis. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and Shc and demonstrate the trans-molecular mechanism of regulation of Jak3 activation by Shc. We show that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated two tyrosine residues in Src homology 2 (SH2) domain and one tyrosine residue each in calponin homology 1 (CH1) domain and phosphotyrosine interaction domain (PID) of Shc. Direct interactions between mutants of Jak3 and Shc showed that although FERM domain of Jak3 was sufficient for binding to Shc, CH1 and PID domains of Shc were responsible for binding to Jak3. Functionally Jak3 was autophosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatases SHP2 and PTP1B to Jak3 and thereby dephosphorylated Jak3. Thus we not only characterize Jak3 interaction with Shc, but also demonstrate the molecular mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as regulators of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases.  相似文献   

2.
3.
4.
5.
Two members of Jak kinases, Jak1 and Jak3, are associated with the cytoplasmic domains of the interleukin-2 (IL-2) receptor (IL-2R) β chain (IL-2Rβ) and the common cytokine receptor γ chain (γc), respectively, and accumulating evidence indicates their functional importance in IL-2 signaling. Here, I showed that coumermycin-induced chemical heterodimerization of Jak1 and Jak3 but not homodimerization of Jak1 or Jak3 induces cell proliferation of an IL-2R-reconstituted cell line. In this regard, expression of IL-2Rβ was essential for cell proliferation by chemical heterodimerization of Jak1 and Jak3, indicating that dimerized Jak1 and Jak3 induce heterodimerization of IL-2Rβ and γc, which may activate receptor-bound signaling molecules. Previous reports using chemical dimerization suggest that dimerization of Jak kinases is sufficient to induce cell proliferation. The present study indicates that re-evaluation of this conclusion is necessary and that interpretation of functional analysis of signaling molecules using chemical dimerizers needs more careful assessment.  相似文献   

6.
Jak3, together with Jak1, is involved in signal transduction initiated by cytokines signaling through the common gamma chain which are important in immune homeostasis and immune pathologies. Based on genetic evidence Jak3 has been considered to be an attractive target for immunosuppression. The Jak inhibitor tofacitinib (CP-690,550) which is an approved drug for rheumatoid arthritis was originally introduced as a selective Jak3 inhibitor, however, it also inhibits Jak1 and Jak2. The search for new selective Jak3 inhibitors has yielded several compounds whose profiles will be reviewed here. Implications on Jak3 as a therapeutic target are also discussed.  相似文献   

7.
Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are sufficient for binding to a biotinylated peptide comprising the membrane-proximal 73 amino acids of gp130, the signal-transducing receptor chain of interleukin-6-type cytokines. By the fold recognition approach amino acid residues 36-112 of Jak1 were predicted to adopt a beta-grasp fold, and a structural model was built using ubiquitin as a template. Substitution of Tyr(107) to alanine, a residue conserved among Jaks and involved in hydrophobic core interactions of the proposed beta-grasp domain, abrogated binding of full-length Jak1 to gp130 in COS-7 transfectants. By further mutagenesis we identified the loop 4 region of the Jak1 beta-grasp domain as essential for gp130 association and gp130-mediated signal transduction. In Jak1-deficient U4C cells reconstituted with the loop 4 Jak1 mutants L80A/Y81A and Delta(Tyr(81)-Ser(84)), the interferon-gamma, interferon-alpha, and interleukin-6 responses were similarly impaired. Thus, loop 4 of the beta-grasp domain plays a role in the association of Jak1 with both class I and II cytokine receptors. Taken together the structural model and the mutagenesis data provide further insight into the interaction of Janus kinases with cytokine receptors.  相似文献   

8.
The Jak/STAT pathway is activated following stimulation of the type I angiotensin II receptor. To examine whether this pathway is shared among other G-protein-coupled receptors, we studied the linkage between the alpha(1) adrenergic receptor and this pathway. The alpha(1) agonist phenylephrine induced tyrosine phosphorylation of Jak2, Tyk2, and STAT1 in vascular smooth muscle cells. The phosphorylation of Jak2 was prevented by the alpha(1) receptor antagonists prazosin and chloroethylclonidine, but not by WB4101, and that of STAT1 was inhibited by prazosin and the Jak2 inhibitor AG490. After stimulation with phenylephrine, Jak2 and STAT1 were found to associate with alpha(1B) receptor. Phenylephrine stimulated the DNA binding activity of STAT1. Protein synthesis promoted by phenylephrine was inhibited by prazosin, AG490, and the introduction of a decoy oligonucleotide for STAT1. These results suggested that alpha(1) receptor is linked to the Jak/STAT pathway and that this pathway mediates alpha(1) agonist-induced smooth muscle hypertrophy.  相似文献   

9.
The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.  相似文献   

10.
Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.  相似文献   

11.
Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling.  相似文献   

12.
Janus (Jak) tyrosine kinases contain a tyrosine kinase (JH1) domain adjacent to a catalytically inactive pseudokinase domain (JH2). The JH2 domain has been implicated in regulation of Jak activity, but its function remains poorly understood. Here, we found that the JH2 domain negatively regulates the activity of Jak2 and Jak3. Deletion of JH2 resulted in increased tyrosine phosphorylation of the Jak2- and Jak3-JH2 deletion mutants as well as of coexpressed STAT5. In cytokine receptor signaling, the deletion of the Jak2- and Jak3-JH2 domains resulted in interferon-gamma and interleukin-2-independent STAT activation, respectively. However, cytokine stimulations did not further induce the JH2 deletion mutant-mediated STAT activation. The deletion of the Jak2 JH2 domain also abolished interferon-gamma-inducible kinase activation, although it did not affect the reciprocal Jak1-Jak2 interaction in 293T cells. Chimeric constructs, where the JH2 domains were swapped between Jak2 and Jak3, retained low basal activity and cytokine inducible signaling, indicating functional conservation between the two JH2 domains. However, the basal activity of Jak2 was significantly lower than that of Jak3, suggesting differences in the regulation of Jak2 and Jak3 activity. In conclusion, we found that the JH2 domain has a conserved function in Jak2 and Jak3. The JH2 domain is required for two distinct functions in cytokine signaling: (i) inhibition of the basal activity of Jak2 and Jak3, and (ii) cytokine-inducible activation of signaling. The Jak-JH2 deletion mutants are catalytically active, activate STAT5, and interact with another Jak kinase, but the JH2 domain is required to connect these signaling events to receptor activation. Thus, we propose that the JH2 domain contributes to both the uninduced and ligand-induced Jak-receptor complex, where it acts as a cytokine-inducible switch to regulate signal transduction.  相似文献   

13.
14.
Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μm imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells.  相似文献   

15.
We examined the role of zebrafish (Danio rerio) Jak2a, a homolog of mammalian Jak2, in the developing embryo by injecting in vitro synthesized Jak2a shRNA into zebrafish zygotes. Blood circulation was suppressed in Jak2a shRNA-injected embryos from 24 hours post fertilization (hpf) and all embryos died with enlarged pericardium, shortened body lengths, and defects in some vasculature within 8 days post fertilization. O-dianisidine staining of red blood cells revealed normal blood island formation with no circulating red blood cells. As in Jak2−/− transgenic mice, expression of definitive Ba1 globin was significantly reduced in Jak2a knockdown embryos at 36 hpf, whereas expression of other hematopoietic markers, primitive be1 globin, gata-1, and scl, were unaffected. More importantly, blood vessel formation was disturbed in Jak2a knockdown embryos as revealed by alkaline phosphatase staining at 72 hpf. Thus, our data indicate that zebrafish Jak2a is important in both definitive hematopoiesis and blood vessel formation.  相似文献   

16.
Signal transduction through cytokine receptors is mediated mainly by non-covalently associated Jak tyrosine kinases. By confocal microscopy, the cytokine receptor gp130 and Jak1, fused with either yellow (YFP) or cyan (CFP) fluorescent protein, were found to be colocalized predominantly at intracellular vesicular structures and at the plasma membrane. Quantitative fluorescence recovery after photobleaching (FRAP) analysis at the plasma membrane revealed equal mobilities for gp130-YFP and Jak1-YFP. Thus, Jak1-YFP diffuses like a transmembrane protein indicating that membrane-bound Jak1 does not exchange rapidly with cytosolic Jaks. Applying a novel dual-color FRAP approach we found that immobilization of gp130-CFP by a pair of monoclonal antibodies led to a corresponding immobilization of co-transfected Jak1-YFP. We conclude from these findings that Jak1, once bound to a gp130 molecule, does not exchange between different receptors at the plasma membrane neither via the cytoplasmic compartment nor via a membrane-associated state.  相似文献   

17.
Human T-lymphotropic virus type 1 (HTLV-1) and HTLV-2 differ in pathogenicity in vivo. HTLV-1 causes leukemia and neurologic and inflammatory diseases, whereas HTLV-2 is less clearly associated with human disease. Both retroviruses transform human T cells in vitro, and transformation by HTLV-1 was found to be associated with the constitutive activation of the Jak/STAT pathway. To assess whether HTLV-2 transformation may also result in constitutive activation of the Jak/STAT pathway, six interleukin-2-independent, HTLV-2-transformed T-cell lines were analyzed for the presence of activated Jak and STAT proteins by electrophoretic mobility shift assay. In addition, the phosphorylation status of Jak and STAT proteins was assessed directly by immunoprecipitation and immunoblotting with an antiphosphotyrosine antibody. Jak/STAT proteins were not found to be constitutively activated in any of the T-cell lines infected by the type 2 human and nonhuman primate viruses, suggesting that HTLV-2 and the cognate virus simian T-lymphotropic virus type 2 from Pan paniscus transform T cells in vitro by mechanisms at least partially different from those used by HTLV-1.  相似文献   

18.
Activated Jak2 with the V617F point mutation promotes G1/S phase transition   总被引:1,自引:0,他引:1  
Hematopoietic stem cells in myeloproliferative diseases mostly retain the potential to differentiate but are characterized by hyper-responsiveness to growth factors, as well as partial factor-independent growth. The V617F activating point mutation in Jak2 has recently been associated with myeloproliferative disorders. Using various cell line models, mechanisms that contribute to Jak2V617-mediated signaling were investigated. Treatment of the Jak2V617F mutant-expressing erythroid leukemia cell line HEL with a small molecule Jak2 inhibitor was associated with a dose-dependent G(1) cell cycle arrest. This inhibition correlated with decreased expression of cyclin D2 and increased expression of the cell cycle inhibitor p27(Kip). Inhibition of Jak2V617F with a Jak2-targeted small interfering RNA approach resulted in a similar phenotype. Mechanisms leading to altered p27(Kip) and cyclin D2 likely involve inhibition of STAT5, a major target of Jak2 in hematopoietic cells, because a constitutively active form of STAT5 reduced p27(Kip) and increased cyclin D2 expression. Jak2V617F and constitutively active STAT5 also induced high levels of reactive oxygen species, which are sufficient to promote G(1)/S phase transition. In contrast, treatment of HEL cells with the antioxidant N-acetylcysteine decreased cell growth or expression of cyclin D2 and increased expression of p27(Kip). Similar results were obtained in BaF3 cells transfected with Jak2V617F, but these cells required coexpression of the erythropoietin receptor for optimal signaling. These results suggest that regulation of cyclin D2 and p27(Kip) in combination with redox-dependent processes promotes G(1)/S phase transition downstream of Jak2V617F/STAT5 and therefore hint at potential novel targets for drug development that may aid traditional therapy.  相似文献   

19.
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号