首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lopez L  Camas A  Shivaji R  Ankala A  Williams P  Luthe D 《Planta》2007,226(2):517-527
When lepidopteran larvae feed on the insect-resistant maize genotype Mp708 there is a rapid accumulation of a defensive cysteine protease, Maize insect resistance 1-cysteine protease (Mir1-CP), at the feeding site. Silver-enhanced immunolocalization visualized with both light and transmission electron microscopy was used to determine the location of Mir1-CP in the maize leaf. The results indicated that Mir1-CP is localized predominantly in the phloem of minor and intermediate veins. After 24 h of larval feeding, Mir1-CP increased in abundance in the vascular parenchyma cells and in the thick-walled sieve element (TSE); it was also found localized to the bundle sheath and mesophyll cells. In situ hybridization of mRNA encoding Mir1-CP indicated that the primary sites of Mir1-CP synthesis in the whorl are the vascular parenchyma and bundle sheath cells. In addition to the phloem, Mir1-CP was also found in the metaxylem of the leaf and root. After 24 h of foliar feeding, the amount of Mir1-CP in the root xylem increased and it appeared to move from xylem parenchyma into the root metaxylem elements. The accumulation of Mir1-CP in maize vascular elements suggests Mir1-CP may move through these tissues to defend against insect herbivores.  相似文献   

2.
3.
A unique 33-kDa cysteine protease (Mir1-CP) rapidly accumulates at the feeding site in the whorls of maize (Zea mays L.) lines that are resistant to herbivory by Spodoptera frugiperda and other lepidopteran species. When larvae were reared on resistant plants, larval growth was reduced due to impaired nutrient utilization. Scanning electron microscopy (SEM) indicated that the peritrophic matrix (PM) was damaged when larvae fed on resistant plants or transgenic maize callus expressing Mir1-CP. To directly determine the effects of Mir1-CP on the PM in vitro, dissected PMs were treated with purified, recombinant Mir1-CP and the movement of Blue Dextran 2000 across the PM was measured. Mir1-CP completely permeabilized the PM and the time required to reach full permeability was inversely proportional to the concentration of Mir1-CP. Inclusion of E64, a specific cysteine protease inhibitor prevented the damage. The lumen side of the PM was more vulnerable to Mir1-CP attack than the epithelial side. Mir1-CP damaged the PM at pH values as high as 8.5 and more actively permeabilized the PM than equivalent concentrations of the cysteine proteases papain, bromelain and ficin. The effect of Mir1-CP on the PMs of Helicoverpa zea, Danaus plexippus, Ostrinia nubilalis, Periplaneta americana and Tenebrio molitor also was tested, but the greatest effect was on the S. frugiperda PM. These results demonstrate that the insect-inducible Mir1-CP directly damages the PM in vitro and is critical to insect defense in maize.  相似文献   

4.
5.
Mohan S  Ma PW  Williams WP  Luthe DS 《PloS one》2008,3(3):e1786
When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50) values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.  相似文献   

6.
Leaf-feeding damage by first generation larvae of fall armyworm, Spodopter frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), and southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), cause major economic losses each year in maize, Zea mays L. A previous study identified quantitative trait loci (QTL) contributing to reduced leaf-feeding damage by these insects in the maize line Mp704. This study was initiated to identify QTL and their interactions associated with first generation leaf-feeding damage by fall armyworm and southwestern corn borer. QTL associated with fall armyworm and southwestern corn borer resistance in resistant line Mp708 were identified and compared with Mp704. Multiple trait analysis (MTA) of both data sets was then used to identify the most important genetic regions affecting resistance to fall armyworm and southwestern corn borer leaf-feeding damage. Genetic models containing four and seven QTL explained southwestern corn borer and fall armyworm resistance, respectively, in Mp708. Key genomic regions on chromosomes 1, 5, 7, and 9 were identified by MTA in Mp704 and Mp708 that confer resistance to both fall armyworm and southwestern corn borer. QTL regions on chromosomes 1, 5, 7, and 9 contained resistance to both insects and were present in both resistant lines. These regions correspond with previously identified QTL related to resistance to other lepidopteran insects, suggesting that broad-spectrum resistance to leaf feeding is primarily controlled by only a few genetic regions in this germplasm.  相似文献   

7.
8.
Many of the proteins and defense pathways in maize that are activated in an organ-specific manner in leaves and roots during aboveground caterpillar attack have not yet been identified. In this study, we examined systemic and organ-specific defenses in the insect-resistant maize genotype, Mp708, when infested aboveground with fall armyworm (FAW, Spodoptera frugiperda). We used proteomic and network biology analyses and then integrated these data with known FAW resistance QTL to create a protein abundance QTL (pQTL) subnetwork. Using 10-plex tandem mass spectrometry tags (TMT) proteomics technique, we identified a total of 4675 proteins in leaves and roots of control and FAW-infested plants. Among the identified proteins, 794 had significant differences in abundance in response to FAW herbivory. Proteins that were upregulated in leaves during FAW infestation included jasmonic acid biosynthetic enzymes, cysteine proteases, protease inhibitors, REDOX-related proteins, and peroxidases. In roots, highly abundant proteins were involved in ET biosynthesis, DNA expression regulation, and pyruvate biosynthesis. We found many proteins that possibly contribute different defense functions to FAW resistance in Mp708. One potential resistance mechanism identified was that trade-offs between growth and defense responses were reduced in Mp708. Some of the proteins involved in this trade-off that were found within the pQTL subnetwork were the Kinesin-like protein (GRMZM2G046186_P01) and Pi starvation-induced protein (GRMZM2G118037_P01). We proposed other mechanisms contributing to resistance that suggest that jasmonic acid and ethylene control the local accumulation of insecticidal cysteine protease (MIR1-CP) in leaves, while ethylene controlled the systemic accumulation of MIR1-CP in roots. Finally, we hypothesized that receptor kinases such as receptor protein kinase 1 (GRMZM2G055678) could be involved in the activation of root-specific defense responses during aboveground insect infestation.  相似文献   

9.
The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.  相似文献   

10.
Protein patterns of callus from corn (Zea mays L.) inbreds that are either resistant or susceptible to fall armyworm (Spodoptera frugiperda [J.E. Smith]) were analyzed by two-dimensional electrophoresis. Fall armyworm larvae reared on callus initiated from resistant inbreds were significantly smaller than those reared on callus of susceptible inbreds. A 33-kD protein found in callus from the resistant inbreds Mp704 and Mp708 was absent in callus from the susceptible inbreds Tx601 and Ab24E. However, a 36-kD protein found in Ab24E callus immunoreacted with polyclonal antibody raised against the 33-kD protein. When Mp704 nonfriable callus changed to friable, larval growth was not inhibited and the 33-kD protein was absent. There was a significant negative correlation between the concentration of the 33-kD protein in the callus and the weight of the larvae feeding on the callus in the F2 progeny of Mp704 x Tx601. The N-terminal amino acid sequence of the 33-kD protein suggested that it was cysteine proteinase. Purification of the 33- (Mp708) and 36-kD (Ab24E) proteins indicated that they were both cysteine proteinases. The 33-kD cysteine proteinase had 7-fold higher specific activity than the 36-kD enzyme.  相似文献   

11.
12.
Although there is growing evidence that silicon (Si)‐based plant defenses effectively reduce both the palatability and digestibility of leaves, and thus impact nutrient assimilation by insect herbivores, much less is known about how this is affected by extrinsic and intrinsic factors. For example, do herbivores exhibit compensatory feeding on poor‐quality diets with Si or are Si defenses less effective in agroecosystems where high N availability increases plant quality? To investigate the interactive effects of N and Si on insect feeding, we conducted insect performance and compensatory feeding bioassays using maize, Zea mays L. (Poaceae), and the true armyworm, Pseudeletia unipuncta Haworth (Lepidoptera: Noctuidae). In the performance assay, the addition of Si alone resulted in increased larval mortality compared with the controls, likely because early instars with poorly developed mandibles could not feed effectively. However, larvae fed on plants treated with both Si and N survived better than on plants treated with Si only, although pupal mass did not differ between treatments. In our compensatory assay, Si addition reduced maize consumption, but increased both armyworm approximate digestibility and N assimilation efficiency, suggesting that enhanced post‐ingestion feeding physiology, rather than compensatory food intake, could have accounted for the lack of Si effects on pupal weight. Overall, our results demonstrate that, similar to other chemical and mechanical defenses, the effectiveness of plant Si defense is influenced by plant nutrient status and consumer compensatory ability.  相似文献   

13.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

14.
Twelve to fourteen integral proteins were found to reside in the Type I peritrophic matrix (PM) of Mamestra configurata (bertha armyworm) larvae. Several methods were employed, including de novo peptide sequencing, the generation of a midgut-specific EST database and immunological screening, which led to the isolation of cDNAs encoding two integral PM proteins. McPM1, the largest PM protein described to date at 202 kDa, was comprised of a concatamer of 19 chitin binding domains (CBD), 12 of which resided within a central repetitive region consisting of six iterations of a two CBD module. The protein was found to reside within the PM primarily as several lower molecular weight, presumably proteolytically processed, forms. McMUC1 was similar in structure to other insect intestinal mucins (IIM) and was highly glycosylated. The expression of both proteins was restricted to the larval midgut. Lower molecular weight proteins that may represent non- and partially glycosylated forms of McMUC1 were also recognized by an anti-McMUC1 antiserum. These were preferentially degraded upon ingestion of M. configurata multi-capsid nucleopolyhedrovirus by larvae, possibly by a viral-encoded metalloprotease. A molecular model of PM structure is presented featuring the interaction of McPM1 with chitin inter-fibril junctions and McMUC1 with the extended chains in the internodal regions. The potential for interaction between PM proteins via intermolecular disulfide bond formation and through association of CBD with N-linked glycans is discussed.  相似文献   

15.
Summary The effects of endophytic fungi (Tribe Balansiae, Clavicipitaceae, Ascomycetes) of grasses on an insect herbivore were studied by feeding paired groups of larvae of the fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) leaves from either infected or uninfected individuals. Perennial ryegrass infected by the Lolium endophyte, tall fescue infected by Epichloe typhina, dallisgrass infected by Myriogenospora atramentosa, Texas wintergrass infected by Atkinsonella hypoxylon, and sandbur infected by Balansia obtecta were utilized. The endophytes of ryegrass and fescue previously have been shown to be toxic to mammalian herbivores and to deter feeding of some insect herbivores. In this study we extend the antiherbivore properties of those endophytes to the fall armyworm and demonstrate that fungal endophytes in three other genera have similar antiherbivore properties. For most grasses, survival and weights of fall armyworm larvae fed infected leaves were significantly lower and larval duration was significantly longer compared to larvae fed uninfected leaves. Resistance to herbivores may provide a selective advantage to endophyte-infected grasses in natural populations.  相似文献   

16.
17.
The resistance/susceptibility levels of ten maize (Zea mays L.) cultivars to neonates and 3rd-instar larvae of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) were measured in the field and screenhouse experiments. The maize cultivars tested were: Inbred A, Mp 704, V-37, Population 10, Hybrid 511, Katumani Composite B, ER-29 SVR, Poza Rica 7832, ICZ2-CM, and MMV 400. Most cultivars were found susceptible to 3rd-instar larvae based on the incidence of dead heart symptoms, foliar feeding and stem tunnelling caused by stem borers in both the field and screenhouse experiments. However, the maize cultivars V-37, MMV 400 and Poza Rica 7832 sustained significantly lesser damage than the other cultivars when infested with neonates or 3rd instar larvae.The screenhouse experiments conducted with five maize cultivars, i.e. Inbred A, Mp 704, V-37, ER-29 SVR, and Poza Rica 7832 showed that neonates fed less on the resistant than the susceptible maize cultivars but feeding by the 3rd instars was equally high on all the maize cultivars except Mp 704 on which the larvae fed less than the others. In the cultivars infested with neonates, the mean period for 50% moth emergence P50 was longest on Mp 704 followed by Poza Rica 7832, ER-29 SVR, V-37 and Inbred A. In the cultivars infested with 3rd-instars, P50 was longest for Poza Rica 7832 followed equally by the remaining cultivars.On the basis of the evidence presented we here conclude that neonates of C. partellus are sensitive to the growth inhibiting effects of the resistant maize cultivars Mp 704, V-37, and Poza Rica 7832 but the older larvae are insensitive to these effects of Mp 704 and V-37 but not of Poza Rica 7832.  相似文献   

18.
Maize [Zea mays L. ssp. mays (Poaceae)] was domesticated from Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley) in present‐day Mexico. Fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), is among the most important pests of maize in Mexico and Central America. We compared the strength of plant defenses against fall armyworm between micro‐sympatric landrace maize and Balsas teosinte in the field and laboratory. The field comparison, conducted in Mexico, consisted of comparing the frequency of fall armyworm infestation between young maize and Balsas teosinte plants in dryland agricultural fields in which Balsas teosinte grew as a weed. The laboratory comparison contrasted the performance of fall armyworm larvae provided a diet of leaf tissue excised from maize or Balsas teosinte plants that were intact or had been primed by larval feeding. In the field, maize plants were more frequently infested with fall armyworm than Balsas teosinte plants: over 3 years and three fields, maize was infested at a ca. 1.8‐fold greater rate than Balsas teosinte. In the laboratory, larval growth, but not survivorship, was differently affected by feeding on maize vs. Balsas teosinte, and on primed vs. intact plants. Specifically, survivorship was ca. 98%, and did not differ between maize and Balsas teosinte, nor between primed and intact plants. Larvae grew less on intact vs. primed maize, and similarly on intact vs. primed Balsas teosinte; overall, growth was 1.2‐fold greater on maize compared to Balsas teosinte, and on primed compared to intact plants. Parallel observations showed that the differences in growth could not be attributed to the amount of leaf tissue consumed by larvae. We discuss our results in relation to differences in the strength of plant defenses between crops and their ancestors, the relevance of unmanaged Balsas teosinte introgression in the context of fall armyworm defenses in maize, and whether greater growth of larvae on primed vs. intact plants signifies herbivore offense.  相似文献   

19.
Abstract 1 Native natural enemies have the potential to control fall armyworm Spodoptera frugiperda (Smith) in tropical maize grown in Mexico, where this insect pest causes severe economic losses to farmers. It has been proposed that enhancing herbivore‐induced volatile emissions in maize plants may help to increase the effectiveness of natural enemies, which use these volatiles to locate their prey. This will only be of immediate benefit to farmers if the activity of the natural enemies results in a direct reduction in herbivory. Here we report on field surveys for the most common natural enemies in a tropical maize‐growing region in Mexico and the potential effects of these enemies on herbivory by fall armyworm. 2 Caterpillars were collected in maize fields near Poza Rica in the state of Veracruz during January and February 1999, 2000 and 2001. Plants were either naturally infested by S. frugiperda, or artificially infested with laboratory‐reared larvae. Ten species of parasitoids emerged from the collected larvae and eight species of predators that are known to feed on larvae and eggs were observed on the plants. Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) was the dominant parasitoid species, in 1999 and 2001. 3 Of the nine larval parasitoids collected, six (all solitary) are known to reduce herbivory, whereas one causes the host to eat more (for two species this is not known). This implies that enhancing the effectiveness of solitary endoparasitoids may benefit subsistence farmers in developing countries by immediately reducing herbivory. The overall benefit for the plant resulting from parasitoid activity also has important implications for the evolutionary role of parasitoids in contributing to selection pressures that shape indirect defences in plants.  相似文献   

20.
The main reason for the varying degrees of success of peptidase inhibitors (PI) as biological insecticides is the existence of a poorly understood mechanism, which allows pest insects to compensate for PI present in their diet. To challenge this highly flexible physiological mechanism and to prolong the inhibitory effect of PI on insect growth, a number of measures were taken into account before and during experiments with a notorious pest insect, the desert locust, Schistocerca gregaria: (i) non-plant PI (pacifastin-related inhibitors) were used to reduce the risk of a specific co-evolutionary adaptation of the pest insect, (ii) based on the main types of digestive enzymes present in the midgut, mixtures of multiple PI with different enzyme specificity were selected, allowing for a maximal inhibition of the proteolytic activity and (iii) digestive peptidase samples were taken during oral administration experiments to study compensatory mechanisms. Contrary to larvae fed on a diet containing plant-derived PI, a significant growth impediment was observed in larvae that were fed a mixture of different pacifastin-like PI. Nevertheless, the growth inhibition effect of this PI mixture attenuated after a few days, Moreover, a comprehensive study of the observed responses after oral administration of PI revealed that S. gregaria larvae can adjust their secreted digestive enzyme activities in two distinct ways depending on the composition/concentration of the PI-mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号