首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2–4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 68) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 68 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate.  相似文献   

2.
Selected pyridinol analogues of the experimental neuroprotective drug idebenone have been synthesized and evaluated as antioxidants capable of preserving mitochondrial function. The compounds, having a different redox core but the same side chain as idebenone, exhibited a range of potencies, reflecting differences in their structures. The results obtained provide guidance in the design of such analogues with improved properties. Analogues were identified that have significantly improved antioxidant activity compared with idebenone in cultured lymphocytes, and which exhibit lesser inhibition of the electron transport chain.  相似文献   

3.
Two new aza analogues of the neuroprotective agent idebenone have been synthesized and characterized. Their antioxidant activity, and ability to augment ATP levels have been evaluated in several different cell lines having suboptimal mitochondrial function. Both compounds were found to be good ROS scavengers, and to protect the cells from oxidative stress induced by glutathione depletion. The compounds were more effective than idebenone in neurodegenerative disease cells. These novel pyrimidinol derivatives were also shown to augment ATP levels in coenzyme Q10-deficient human lymphocytes. The more lipophilic side chains attached to the pyrimidinol redox core in these compounds resulted in less inhibition of the electron transport chain and improved antioxidant activity.  相似文献   

4.
Myrrhanones A (1) and B (2), isolated from the gum resin of Commiphora mukul, were reported to exhibit anticancer and anti-inflammatory activities. In view of their interesting skeletal features and biological activities they have been chemically modified by exploiting their side chain functionalities to synthesise 29 diverse analogues. All the synthesized analogues were screened for their cytotoxic potential against a panel of five human cancer cell lines which include DU145 (Prostate), HT-29 (Colon), MCF-7 (Breast), Hela (Cervical) and U87MG (Glioblastoma) along with a normal cell line (L132). The synthesized analogues were also screened for anti-inflammatory activity against TNF-α and IL-1β using LPS induced inflammation model employing U937 cells. The biological screening results revealed that compounds 4b (piperidine analogue), 9d (linear aliphatic four member amide analogue) and 9i (N-methyl piperazine analogue) displayed significant cytotoxic activity against MCF-7, HT-29 and DU145 [IC50 (μM): 4.65 ± 1.28, 5.48 ± 0.13 and 6.63 ± 1.39] respectively. These analogues were further taken up for apoptotic assay, which confirmed that compounds 4b, 9d and 9i induced apoptosis in MCF-7, HT-29, DU145 cells and arrested in G0/G1 phase. Further, compounds 9c and 9g found to exhibit good anti-inflammatory activity against TNF-α with IC50 (μM) values of 10.02 ± 2.13 and 10.53 ± 0.48 respectively, while compound 2 exhibited strong inhibitory activity against both TNF-α (IC50: 9.39 ± 0.44 μM) and IL-1β (IC50: 12.15 ± 1.36 μM).  相似文献   

5.
As part of our ongoing efforts to identify compounds having potential utility in treating neurodegenerative and mitochondrial disorders, a series of pyridinol analogues have been prepared. The synthetic route employed for the preparation of the new analogues is different, and considerably more efficient, than that used in previously reported studies. The new route yields a pair of pyridinol regioisomers that can be readily separated and evaluated. Their ability to quench lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP synthesis is reported. The optimal side chain length was found to be 16 carbon atoms. The metabolic stability of those compounds having optimal biological activities was evaluated in vitro using bovine liver microsomes. The omission of any side chain hydroxyl group and introduction of an azetidine moiety at position 6 of the pyridinol redox core (8 and 9) increased their microsomal stability as compared to the exocyclic dimethylamino group. The favorable metabolic stability conferred by the azetidine moiety in compounds 8 and 9 makes these compounds excellent candidates for further evaluation.  相似文献   

6.
Chalcones and their synthetic cyclic analogues have been shown to possess a full scale of biological activities in a variety of experimental systems. They were assessed to be mostly effective in defense against free radicals in the organism, but several compounds exhibited cytotoxic pro-oxidant activities. The respiratory response and antioxidant status in mitochondria were investigated upon addition of 4′-dimethylaminochalcone (1a) and its cyclic analogues, (E)-2-(4′-((CH3)2?N)-benzylidene)-1-indanone (1b), -1-tetralone (1c), and -1-benzosuberone (1d). Selected structures were able to change the respiratory response of mitochondria and showed an ability to modify mitochondrial metabolic and redox efficiency, though they did not indicate redox reactivity towards glutathione in adduct-free incubations. The results of the study indicate that -chalcone and -tetralone derivatives cause suppression of reactive oxygen species affecting mitochondrial respiration by mild uncoupling. In addition, (E)-2-(4′-((CH3)2?N)-indanone (1b), and to a greater extent, -benzosuberone (1d), showed pro-oxidant effects, which partially explain their cytotoxicity.  相似文献   

7.
Previously we described a novel series of pyrimidinol antioxidants and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Our initial lead compound was a potent antioxidant in vitro, but was subsequently found to exhibit poor stability to oxidative metabolism. The current study focused on balancing potency with metabolic stability through structural modification, and involved modifications at positions 2 and 4 of the pyrimidinol redox core, likely sites of oxidative metabolism. Eight new analogues have been prepared and their ability to suppress lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP production, has been investigated. The metabolic stability of the prepared compounds was also assessed in vitro using bovine liver microsomes to obtain preliminary insight on this class of compounds. This study revealed the complexity of balancing reasonable metabolic stability with efficient antioxidant properties. While a few analogues appear promising, especially in terms of metabolic stability, a 4-isopropoxy derivative conserved the favorable biological activity and exhibited good metabolic stability. The favorable metabolic stability conferred by the combination of the azetidine and isopropoxy moieties in analogue 6 makes this compound an excellent candidate for further evaluation.  相似文献   

8.
The synthesis of some novel azasteroids and thiasteroids based on a pregnan nucleus with a Δ7 double bond in two to five steps from the key aldehyde (3S,20S)-20-formylpregn-7-en-3-yl acetate has been disclosed herein. These compounds were evaluated as potential inhibitors of the enzyme Δ24-sterol methyltransferase (24-SMT), which is a key enzyme in the biosynthesis of ergosterol, and for their effects on the growth of the yeast Yarrowia lipolytica. Most of the side chain modified analogues were recognized as 24-SMT inhibitors, and in particular the 23-azasteroids 5f5i and the 24-azasteroid 11 showed potent antifungal activity. The target enzyme could be identified unambiguously using an improved whole-cell assay combined with GC–MS analysis of the sterol pattern resulting upon incubation with the inhibitors.  相似文献   

9.

Background

Coenzyme Q10 (CoQ10) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.

Methodology/Principal Findings

To test these concepts, we have evaluated the effects of CoQ10, coenzyme Q2 (CoQ2), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ10 deficiency. A final concentration of 5 µM of each compound was chosen to approximate the plasma concentration of CoQ10 of patients treated with oral ubiquinone. CoQ10 supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ10 deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.

Conclusions/Significance

These results indicate that: 1) pharmacokinetics of CoQ10 in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ10 in the mitochondrial respiratory chain under conditions of CoQ10 deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ10 deficiencies should be treated with CoQ10 supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ2. Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present.  相似文献   

10.
Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363–369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60?h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.  相似文献   

11.
Quinone derivatives are among the rare compounds successfully used as therapeutic reagents to fight mitochondrial diseases. However, their beneficial effect appears to depend on their side chain which presumably governs their interaction with the respiratory chain. The effect of four quinone derivatives was comparatively studied on NADH- and succinate-competitive oxidation by a sub-mitochondrial fraction. Under our experimental conditions, the less hydrophobic derivatives (menadione, duroquinone) poorly affected electron flow from either NADH or succinate to oxygen, yet readily diverting electrons from isolated complex I. This latter effect was abolished by succinate addition. More hydrophobic derivatives (idebenone, decylubiquinone) stimulated oxygen uptake from succinate. But while NADH oxidation was slightly inhibited by idebenone, it was somewhat increased by decylubiquinone. As a result, idebenone strongly favoured succinate over NADH oxidation. This study therefore suggests that any therapeutic use of quinone analogues should take into account their specific effect on each respiratory chain dehydrogenase.  相似文献   

12.
Nine new macrocyclic diterpenoids (19), jatromultones A-I, along with eight known analogues (1017) were isolated from the trunks of Jatropha multifida. The structures of the new compounds, including their absolute configurations, were elucidated by combination of spectroscopic analysis, single crystal X-ray diffraction, Rh2(OCOCF3)4-induced CD method, and chemical correlations. All compounds were screened for the cytotoxicity against five cancer cell lines, including one drug-resistant cell line, and seven compounds exhibited significant activity with IC50 values less than 10 μM. Compound 4 with IC50 values ranging from 2.69 to 6.44 μM toward all cell lines was selected for further mechanistic study, which showed that 4 could arrest cell cycle at G2/M phase and induce apoptosis. The brief structure-activity relationships (SARs) of these macrocyclic diterpenoids were also discussed.  相似文献   

13.
Watzke N  Diekert K  Obrdlik P 《Biochemistry》2010,49(48):10308-10318
Transport of protons and solutes across mitochondrial membranes is essential for many physiological processes. However, neither the proton-pumping respiratory chain complexes nor the mitochondrial secondary active solute transport proteins have been characterized electrophysiologically in their native environment. In this study, solid-supported membrane (SSM) technology was applied for electrical measurements of respiratory chain complexes CI, CII, CIII, and CIV, the F(O)F(1)-ATPase/synthase (CV), and the adenine nucleotide translocase (ANT) in inner membranes of pig heart mitochondria. Specific substrates and inhibitors were used to validate the different assays, and the corresponding K(0.5) and IC(50) values were in good agreement with previously published results obtained with other methods. In combined measurements of CI-CV, it was possible to detect oxidative phosphorylation (OXPHOS), to measure differential effects of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the respective protein activities, and to determine the corresponding IC(50) values. Moreover, the measurements revealed a tight functional coupling of CI and CIII. Coenzyme Q (CoQ) analogues decylubiquinone (DBQ) and idebenone (Ide) stimulated the CII- and CIII-specific electrical currents but had inverse effects on CI-CIII activity. In summary, the results describe the electrophysiological and pharmacological properties of respiratory chain complexes, OXPHOS, and ANT in native mitochondrial membranes and demonstrate that SSM-based electrophysiology provides new insights into a complex molecular mechanism of the respiratory chain and the associated transport proteins. Besides, the SSM-based approach is suited for highly sensitive and specific testing of diverse respiratory chain modulators such as inhibitors, CoQ analogues, and uncoupling agents.  相似文献   

14.
A series of 2-alkylaminomethyl jaspine B analogues were synthesized and evaluated for their cytotoxic effects on human lung adenocarcinoma, breast cancer, and prostate cancer cell lines and a mouse melanoma cell line. Most of the compounds exhibited moderate to good activity against the cancer cell lines. Compound 7f showed the best overall cytotoxicity on PC-3 cells (IC50?=?0.85?μM). Further mechanistic studies revealed that compound 7f induced marked changes in PC-3 cell morphology, disrupted the mitochondrial membrane potential, and increased expression of the autophagy proteins beclin-1, LC3, and P62.  相似文献   

15.
A series of analogues of the PPARγ ligand 15-deoxy-Δ12,14-PGJ2 have been synthesized by functionalization of a 5-alkyl-4-hydroxycyclopentenone core structure obtained by Piancatelli rearrangement of precursor furylcarbinol. Transient transactivation assays indicate that analogues 18 and 20 are selective nanomolar agonists of PPARγ. This subtype selectivity is lost in derivatives (23, 24) with an alkynyl (oct-1-yn) chain at the C3 position, although the cyclopentenone derivative with cis relative configuration (23) showed greater affinity for PPARα.  相似文献   

16.
Seven novel 4-amino acid derivative substituted pyrimidine nucleoside analogues were designed, synthesized, and tested for their anti-CVB3 activity. Initial biological studies indicated that among these 4-amino acid derivative substituted pyrimidine nucleoside analogues, 4-N-(2′-amino-glutaric acid-1′-methylester)-1-(2′- deoxy-2′-β-fluoro-4′-azido)-furanosyl-cytosine 2 exhibited the most potent anti-CVB activity (IC50 = 9.3 μM). The cytotoxicity of these compounds has also been assessed. The toxicity of compound 2 was similar to that of ribavirin.  相似文献   

17.
In the present study, a series of unreported fluorinated dabigatran analogues, which were based on the structural scaffold of dabigatran, were designed by computer-aided simulation. Fifteen fluorinated dabigatran analogues were screened and synthesized. All target compounds were characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. According to the preliminary screening results of inhibition ratio, eleven analogues (inhibition ratio >90%) were evaluated for antithrombin activity in vitro (IC50). The test results expressed that all the analogues showed effective inhibitory activities against thrombin. Especially, compounds 8f, 8k and 8o, with IC50 values of 1.81, 3.21 and 2.16 nM, respectively, showed remarkable anticoagulant activities which were in the range of reference drug dabigatran (IC50 = 1.23 nM). Moreover, compounds 8k and 8o were developed to investigate their anticoagulant activities in vivo. In those part, compound 8o exhibited a fairly strong inhibitory action for arteriovenous thrombosis with inhibition ratio of 84.66%, which was comparable with that of dabigatran (85.07%). Docking simulations demonstrated that these compounds could act as candidates for further development of novel anticoagulant drugs.  相似文献   

18.
E-3,4-Dihydroxy styryl aralkyl ketones as well as their 3,4-diacetylated derivatives as the analogues of neuroprotective agent CAPE were designed and synthesized for improving stability and lipid solubility. The neuroprotective activities of target compounds 10ag and 11ag were tested by three models in vitro, including 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, neuronal protecting effect against damage induced by H2O2 in PC12 cells and nitric oxide suppression effect in BV2 microglial cells. The results demonstrated that compounds 10f and 11f exhibited the most potent neuroprotective effect against oxidative stress and inflammation, which is higher than that of the lead compound CAPE.  相似文献   

19.
The enantiomers of two analogs of Sazetidine-A as well as several other novel biosteric analogues were synthesized. Their binding affinities at three major nAChRs subtypes and selectivity profiles were determined. Though many (S)-enantiomers of Sazetidine-A analogs have high binding affinities and good subtype selectivities, it is not a general rule that (S)-enantiomers are better than their (R) counterparts. Compound 11, of which the ethynyl group was replaced by its’ bioisostere—the triazole via click chemistry, showed a high binding affinity to α4β2 subtype (Ki = 1.3 nM) and better selectivity to the α4β2 subtype over α3β4 subtype with that of Sazetidine-A. The azide compound 15, a potential photoaffinity label, showed improved high selectivity and similar binding property profile with that of Sazetidine-A. The biaryl analog 17 exhibited a much lower affinity as compared to Sazetidine-A indicating the importance of a ‘long tail’ side chain for α4β2 nAChR binding.  相似文献   

20.
Leber’s hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease. Idebenone, a short-chain benzoquinone, has shown promising evidence of efficacy in protecting vision loss and in accelerating recovery of visual acuity in patients with LHON. It was therefore of interest to study suitable LHON models in vitro and in vivo to identify anatomical correlates for this protective activity. At nanomolar concentrations, idebenone protected the rodent RGC cell line RGC-5 against complex I dysfunction in vitro. Consistent with the reported dosing and observed effects in LHON patients, we describe that in mice, idebenone penetrated into the eye at concentrations equivalent to those which protected RGC-5 cells from complex I dysfunction in vitro. Consequently, we next investigated the protective effect of idebenone in a mouse model of LHON, whereby mitochondrial complex I dysfunction was caused by exposure to rotenone. In this model, idebenone protected against the loss of retinal ganglion cells, reduction in retinal thickness and gliosis. Furthermore, consistent with this protection of retinal integrity, idebenone restored the functional loss of vision in this disease model. These results support the pharmacological activity of idebenone and indicate that idebenone holds potential as an effective treatment for vision loss in LHON patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号