首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long–term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin–Huxley (HH) formalism extended to include time–dependent ion concentrations inside and outside the cell and metabolic energy–driven pumps. We reveal the basic mechanism of a state of free energy–starvation (FES) with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long–lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial–vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator–inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, pumps, and other proteins that regulate ion homeostasis.  相似文献   

4.
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.  相似文献   

5.
Abstract: Cyclic GMP (cGMP) is a molecular messenger involved in diverse cellular processes. Recently, cGMP-dependent protein kinase (cGK) type II was determined to be a regulator of endochondral ossification and bone growth, identifying a role for cGMP in the regulation of cellular proliferation. Here, we demonstrate the presence of cGK type I (cGKI) in cells of the developing trigeminal ganglia. cGKI occurs in some proliferating precursors as evidenced by double labeling with an antibody to cGKI and 5-bromo-2'-deoxyuridine(BrdU) incorporation. Inhibition of cGKI with KT5823 or Rp -8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphorothioate ( Rp -8-pCPT-cGMPS) in chick embryos results in a 30–40% decrease in trigeminal ganglia cell number, and this effect is independent of nitric oxide synthase (NOS). In addition, inhibition of cGKI with Rp -8-pCPT-cGMPS results in a 60% decrease in BrdU incorporation in the trigeminal ganglia of embryonic day 5 chicks. We find that PC12 cells expressing cGKI proliferate more rapidly and incorporate more BrdU than do control cells. The cGKI inhibitor Rp -8-pCPT-cGMPS decreases proliferation and BrdU incorporation in transfected PC12 cells but has no effect on control cells. The PC12 cells do not express NOS, indicating that this effect is also independent of NOS. Thus, cGKI regulates the proliferation of sensory neurons as a result of activation of a NOS-independent pathway, representing a novel pathway by which the number of sensory neurons is regulated.  相似文献   

6.
7.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

8.
9.
Patterns of collective movements, such as the distribution of leadership and the organization of individuals, may be either homogeneously (no leader, no specific order), or heterogeneously (1 or several leaders, and a highly stable order) distributed. Members of a group need to synchronize their activities and coordinate their movements, despite the fact that they differ in physiological or morphological traits. The degree of difference in these traits may affect their decision-making strategy. We demonstrate how a theoretical model based on a variation of a simple mimetic rule, i.e., an amplification process, can result in each of the various collective movement patterns and decision-making strategies observed in primates and other species. We consider cases in which 1) the needs of different individuals are identical and social relationships are equivalent between group members, 2) the needs of individuals are different and social relationships are equivalent, and 3) the needs of individuals are different and social relationships are different. Finally, 4) we assess how the synergy between 2 mimetism rules, specifically the probability of joining a movement and that of canceling an initiation, allows group members to stay synchronized and cohesive. Our models suggest that similar self-organized processes have been selected as reliable and well-adapted means for optimal collective decisions across species, despite differences in their biological and social characteristics.  相似文献   

10.
Interpreting Southwesterly Diversity: Underlying Principles and Overarching Patterns. Paul R. Fish and J. Jefferson Reid. eds. Anthropological Research Papers, 48. Tucson: Arizona State University Press, 1996. 320 pp.  相似文献   

11.
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus.  相似文献   

12.
13.
Response properties of the receptor potential at steady state were analyzed in a biophysical model of an olfactory sensory neuron embedded in a multicell environment. The neuron structure was described as a set of several identical dendrites (or cilia) bearing the transduction mechanisms, joined to a nonsensory part—dendritic knob, soma, and axon. The different ionic compositions of the media surrounding the neuron sensory and nonsensory parts and the extraneuronal voltage sources, which both result from the presence of auxiliary cells, were also taken into account. Analytical solutions were found to describe how the receptor potential at the nonsensory part responds to a uniform change in the odorant-dependent conductance resulting from odorant stimulation of the sensory dendrites. We investigated the influence of various geometrical and electrical parameters on the receptor-potential response in the classical model neuron within a homogeneous environment and in the model neuron surrounded with auxiliary cells. First, it was found that the maximum amplitude of the receptor potential is independent of the neuron structure in the absence of auxiliary cells but not in their presence. In the latter case, the amplitude decreases with the length and number of sensory dendrites and with the input resistance of the nonsensory part. Second, the sensitivity (as measured by the increase in membrane conductance at half-maximum response) of the neuron model in the absence of auxiliary cells is higher, but its dynamic range is narrower than in their presence. The dynamic range is wide and the sensitivity low when the input resistance of the nonsensory part is small and the sensory dendrite is unbranched. Both sensitivity and dynamic range are higher for a longer dendrite. These results help understand the morphology of insect olfactory sensilla and can be generalized to other neuron types.  相似文献   

14.
Past findings have established how the faster growth, greaterreproductive output and/or longer survival that are associatedwith heterosis and genomic diversity measured as multi-locusheterozygosity stem from slower intensities with which proteinsare renewed and replaced (=protein turnover). Slower turnoverresults in lower energy requirements and reduced metabolic sensitivityto environmental change, representing a mechanistic basis forevolutionary consequences of genetic polymorphism. To determinethe genetic and functional basis of differences in whole-bodyprotein turnover, we have begun to resolve different proteolyticpathways, searching for genetic polymorphisms with a directeffect upon proteolysis, and assessing the metabolic and physiologicalconsequences of those genetic influences in the mussel Mytilusedulis. Our recent work has established the physiological importanceof lysosomal enzymes under normal conditions of basal proteolysis,and shown that associated effects on energy flux may vary accordingto functional differences between separate enzymes. Data arepresented here which compare metabolic consequences of polymorphismin the lysosomal aminopeptidases Lap-1 and Lap-2. Findings establishthat metabolic and phenotypic effects of genetic polymorphismresult directly from genetic variation at the loci coding forthese peptidases, rather than from linked loci. They also illustratethe complexity of interrelations that ultimately influence theevolutionary consequences of genomic diversity, including associatedinfluences of both Lap-1 and Lap-2 on energy requirements andanimal condition. We impress that energy requirements for proteinturnover may represent a functional basis for epistasis, includingassociations whereby advantages of genetic polymorphism aregreatest at loci that code for enzymes acting in both proteincatabolism and energy provision.  相似文献   

15.
M Usuyama  C Ushida  R Shingai 《PloS one》2012,7(8):e42907
We developed a mathematical model of a hypothetical neuronal signal transduction pathway to better understand olfactory perception in Caenorhabditis elegans. This worm has only three pairs of olfactory receptor neurons. Intracellular Ca(2+) decreases in one pair of olfactory neurons in C. elegans, the AWC neurons, following application of an attractive odor and there is a transient increase in intracellular Ca(2+) following removal of odor. The magnitude of this increase is positively correlated with the duration of odor stimulation. Additionally, this Ca(2+) transient is induced by a cGMP second messenger system. We identified likely candidates for the signal transduction molecules functioning in this system based on available gene expression and physiological data from AWCs. Our model incorporated a G-protein-coupled odor receptor, a G-protein, a guanylate cyclase as the G-protein effector, and a single phosphodiesterase. Additionally, a cyclic-nucleotide-gated ion channel and a voltage-gated ion channel that mediated calcium influx were incorporated into the model. We posited that, upon odor stimulation, guanylate cyclase was suppressed by the G-protein and that, upon cessation of the stimulus, the G-protein-induced suppression ceased and cGMP synthesis was restored. A key element of our model was a Ca(2+)-dependent negative feedback loop that ensured that the calcium increases were transient. Two guanylate cyclase-activating proteins acted on the effector guanylate cyclase to negatively regulate cGMP signaling and the resulting calcium influx. Our model was able to closely replicate in silico three important features of the calcium dynamics of AWCs. Specifically, in our simulations, [Ca(2+)] increased rapidly and reached its peak within 10 s after the odor stimulus was removed, peak [Ca(2+)] increased with longer odor exposure, and [Ca(2+)] decreased during a second stimulus that closely followed an initial stimulus. However, application of random background signal ('noise') showed that certain components of the pathway were particularly sensitive to this noise.  相似文献   

16.
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.  相似文献   

17.
Behavioural responses of animals to volatiles in their environment are generally dependent on context. Most natural odours are mixtures of components that can each induce different behaviours when presented on their own. We have investigated how a complex of two olfactory stimuli is evaluated by Drosophila flies in a free-flying two-trap choice assay and how these stimuli are encoded in olfactory receptor neurons. We first observed that volatiles from apple cider vinegar attracted flies while carbon dioxide (CO2) was avoided, confirming their inherent positive and negative values. In contradiction with previous results obtained from walking flies in a four-field olfactometer, in the present assay the addition of CO2 to vinegar increased rather than decreased the attractiveness of vinegar. This effect was female-specific even though males and females responded similarly to CO2 and vinegar on their own. To test whether the female-specific behavioural response to the mixture correlated with a sexual dimorphism at the peripheral level we recorded from olfactory receptor neurons stimulated with vinegar, CO2 and their combination. Responses to vinegar were obtained from three neuron classes, two of them housed with the CO2-responsive neuron in ab1 sensilla. Sensitivity of these neurons to both CO2 and vinegar per se did not differ between males and females and responses from female neurons did not change when CO2 and vinegar were presented simultaneously. We also found that CO2-sensitive neurons are particularly well adapted to respond rapidly to small concentration changes irrespective of background CO2 levels. The ability to encode temporal properties of stimulations differs considerably between CO2- and vinegar-sensitive neurons. These properties may have important implications for in-flight navigation when rapid responses to fragmented odour plumes are crucial to locate odour sources. However, the flies’ sex-specific response to the CO2-vinegar combination and the context-dependent hedonics most likely originate from central rather than peripheral processing.  相似文献   

18.
19.
Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A) and 5-HT(1B) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.  相似文献   

20.
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation (E2) in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current) and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号