首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four stereoisomers of 2RS,4RS-1-[[2-(2,4-dichlorophenyl)-4-(2-(2-propenyloxy)phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (YCZ-2013), a novel brassinosteroid biosynthesis inhibitor, were prepared. The diastereomers of 2RS,4R-5 and 2RS,4S-5 were prepared by using the corresponding optically pure R and S toluene-4-sulfonic acid 2,3-dihydroxypropyl ester (R-4,S-4). The enatiomerically and diastereomerically pure acetonide (5) was obtained by a method involving diastereoselective crystallisation of the tosylate salt, followed by re-equilibration with the mother liquor and chromatography. The optical purity of four target compounds (YCZ-2013) was confirmed by chiral high-performance liquid chromatography (HPLC) and NMR. The effects of these stereoisomers on Arabidopsis stem elongation indicated that the cis isomers of 2S,4R-YCZ-2013 and 2R,4S-YCZ-2013 exhibited potent inhibitory activity with IC50 values of approximately 24 ± 3 and 24 ± 2 nM, respectively. The IC50 values of the trans isomers of 2S,4S-YCZ-2013 and 2R,4R-YCZ-2013 are approximately 1510 ± 50 and 3900 ± 332 nM, respectively. Co-application of brassinolide (10 nM), the most potent BR, and GA3 (1 μM) to Arabidopsis seedlings grown in the dark with 2R,4S-YCZ-2013 and 2S,4R-YCZ-2013 revealed that brassinolide recovered the induced dwarfism of Arabidopsis seedlings, whereas GA3 showed no effect.  相似文献   

2.
Two series of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives C1C15 and D1D15 have been synthesized and evaluated for their B-Raf inhibitory and anti-proliferation activities. Compound C14 ((3-(4-bromophenyl)-5-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanone) showed the most potent biological activity against B-RafV600E (IC50 = 0.11 μM) and WM266.4 human melanoma cell line (GI50 = 0.58 μM), being comparable with the positive control Erlotinib and more potent than our previous best compound, while D10 ((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)(5-(3-fluorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)methanone) performed the best in the D series (IC50 = 1.70 μM; GI50 = 1.45 μM). The docking simulation was performed to analyze the probable binding models and poses and the QSAR model was built for reasonable design of B-Raf inhibitors in future. The introduction of 2,3-dihydrobenzo[b][1,4]dioxin structure reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

3.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

4.
N-[2-(4′-methoxy[1,1′-biphenyl]-4-yl)ethyl]-8-CAC (1) is a high affinity (Ki = 0.084 nM) ligand for the μ opioid receptor and served as the lead compound for this study. Analogues of 1 were made in hopes of identifying an SAR within a series of oxygenated (distal) phenyl derivatives. A number of new analogues were made having single-digit pM affinity for the μ receptor. The most potent was the 3′,4′-methylenedioxy analogue 18 (Ki = 1.6 pM).  相似文献   

5.
Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC50 = 400 nM and 270 nM, respectively) and selective (CC50 > 20 μM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.  相似文献   

6.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

7.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

8.
A series of 1H-benzo[d]imidazole analogues of Pimobendan, substituted at position 5 with either –CF3 or –NO2, were synthesized using a short synthetic route. All the nitro derivatives were potent, and exhibited a concentration- and partial endothelium-dependent vasorelaxant effects, with EC50s <5 μM. 2-Methoxy-4-[5-nitro-1H-benzo[d]imidazol-2-yl]phenol (compound 13) was the most potent derivative of the series, showing an EC50 value of 1.81 μM and Emax of 91.7% for ex vivo relaxant response in intact aortic rings, resulting in a 2.5-fold higher activity compared to Pimobendan. The closely related 5-CF3 analogue (compound 8), was 19 times less potent than 13. The antihypertensive activity of compound 13 was evaluated at doses of 25, 50 and 100 mg kg?1, using spontaneously hypertensive rats (SHR), showing a statistically significant dose-dependent effect.  相似文献   

9.
Synthesis and biological activities of a series of homo- or substituted piperidine unsymmetrical diethers are described. The novel compounds were evaluated for histamine H3 receptor binding affinities at recombinant human H3 receptor stably expressed in HEK-293 cells. All diethers showed in vitro affinities in nanomolar concentration range. The most potent compounds are 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]-3-methylpiperidine 11 (Ki = 3.2 nM) and 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]azepane 13 (Ki = 3.5 nM).  相似文献   

10.
Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ? 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile.  相似文献   

11.
In the present study, a series of steroidal tetrazole derivatives of androstane and pregnane have been prepared in which the tetrazole moiety was appended at C-3 and 17a-aza locations. 3-Tetrazolo-3,5-androstadien-17-one (6), 3-tetrazolo-19-nor-3,5-androstadien-17-one (10), 3-tetrazolo-3,5-pregnadien-20-one (14), 17a-substituted 3-tetrazolo-17a-aza-d-homo-3,5-androstadien-17-one (2631) and 3-(2-acetyltetrazolo)-17a-aza-d-homo-3,5-androstadien-17-one (32) were synthesized from dehydroepiandrosterone acetate (1) through multiple synthetic steps. Some of the synthesized compounds were evaluated for their in vitro 5α-reductase (5AR) inhibitory activity by measuring the conversion of [3H] androstenedione in human embryonic kidney (HEK) cells. In vivo 5α-reductase inhibitory activity also showed a significant reduction (p <0.05) in rat prostate weight. The most potent compound 14 showed 5AR-2 inhibition with IC50 being 15.6 nM as compared to clinically used drug finasteride (40 nM). There was also a significant inhibition of 5AR-1 with IC50 547 nM compared to finasteride (453 nM).  相似文献   

12.
Thieno[2,3-b]pyridine-5-carbonitrile 16 with a 4-methyl-5-indolylamine at C-4 and a 5-methoxy-2-(dimethylamino)-methylphenyl group at C-2 had an IC50 value of 16 nM for the inhibition of PKCθ. While moderate inhibition of PKCδ was also observed (IC50 = 130 nM), 16 had IC50 values of greater than 5 μM against Lyn and other members of the Src kinase family.  相似文献   

13.
In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50 = 0.64 μM) and in cellular assays (IC50 = 7.1 μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents.  相似文献   

14.
15.
Thirteen 13,28-epoxy triterpenoid saponins were isolated from Ardisia gigantifolia stapf. and one potential anti-tumor saponin was methanolysised by H2SO4 to afford four new compounds. The seventeen compounds were evaluated for their anti-proliferative activity on A549, HCT-8 and Bel-7402 cells. The structure–activity relationship analysis indicated that the incorporation of O group at C-16, l-rhamnose at R5 and acetyl group at OH-6 of the d-glucose lead to a significant increase of the cytotoxic activity on A549 and HCT-8 but significant reduction of the cytotoxic activity on Bel-7402 cells. The synthesized saponins losing 13,28-epoxy and CHO at C-30, losed their cytotoxicities on A549 and HCT-8 cells, suggesting that the two moieties play an essential role for activity. 3β-O-α-l-rhamnopyranosyl-(1  3)-[β-d-xylopyranosyl-(1  2)]-β-d-glucopyranosyl-(1  4)-[β-d-glucopyranosyl-(1  2)]-α-l-arabinopyranoside-16α-hydroxy-13,28-epoxy-oleanane (2) showed better inhibitory activity to Bel-7402 (IC50 0.86 μM) than that of 5-FU (IC50 8.30 μM), which indicate that five saccharide and methyl moiety at C-30 are important for anti-proliferative activity. The activities of saponins 15 > 14, 17 > 16, suggested that the configuration of 28,30-epoxy is preferable to be 30(R) rather than 30(S) on Bel-7402 cells. Further molecular mechanism studies of saponins 1 and 2 were carried out on the cell cycle distribution of Bel-7402 cells.  相似文献   

16.
A series of polyhalo isophthalonitrile derivatives (3 and 4) that incorporate a variety of substituents at the 2-, 4-, 5- and/or 6-positions of the isophthalonitrile moieties have been designed and synthesized. These derivatives were evaluated for their antimicrobial activity against Staphylococcus aureus, Bacillus cereus (Gram-positive bacteria), Escherichia coli, Pseudomonas aeruginosa (Gram-negative bacteria); and Candida albicans (Fungi). Compounds 3 and 4 showed stronger inhibition of Gram-positive bacteria and fungi growth, and the antimicrobial ability of compound 3j (a 4-(benzylamino)-5-chloro-2,6-difluoro analog, MIC[SA] = 0.5 μg/mL; MIC[BC] = 0.4 μg/mL; MIC[CA] = 0.5 μg/mL) were close to nofloxacin and fluconazole and identified as the most potent antimicrobial agents in the series. The preliminary analysis of structure–activity relationships is also discussed.  相似文献   

17.
A series of bridged piperazine derivatives was prepared and the affinity toward σ1 and σ2 receptors by means of radioligand binding assays as well as the inhibition of the growth of six human tumor cell lines was investigated. All possible stereoisomers of the 2-hydroxy, 2-methoxy, 2,2-dimethoxy, 2-oxo, and 2-unsubstituted 6,8-diazabicyclo[3.2.2]nonanes were prepared in a chiral pool synthesis starting with (S)- and (R)-glutamate. A Dieckmann analogous cyclization was the key step in the synthesis of the bicyclic framework. The configuration in position 2 was established by a diastereoselective LiBH4 reduction and subsequent Mitsunobu inversion. Structure–affinity relationships demonstrate that substituents in position 2 decrease σ1 receptor affinity which might be due to unfavorable interactions with the σ1 receptor protein. Without a substituent in position 2 high σ1 affinity was obtained (23a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane): Ki = 11 nM). Experiments with six human tumor cell lines showed a weak but selective growth inhibition of the human small cell lung cancer cell line A-427 by the methyl ethers ent-16b (IC50 = 18.9 μM), 21a (IC50 = 16.4 μM), ent-21a (IC50 = 20.4 μM), and 21b (IC50 = 27.1 μM) and the unsubstituted compounds 23a and 23b (42% inhibition at 20 μM).  相似文献   

18.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

19.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   

20.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号