首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonic anhydrase (CA, EC 4.2.1.1) IX is regarded as a tumour hypoxia marker and CA inhibitors have been proposed as a new class of antitumor agents, with one such agent in Phase II clinical trials. The expression of some CAs, in particular the isoforms CA IX and CA XII, has been correlated with tumour aggressiveness and progression in several cancers. The aim of this study was to evaluate the possibility that CA IX could represent a marker related to clear cell Renal Cell Carcinoma (ccRCC). Bcl-2 and Bax, and the activity of caspase-3, evaluated in tissue biopsies from patients, were congruent with resistance to apoptosis in ccRCCs with respect to healthy controls, respectively. In the same samples, the CA IX and pro-angiogenic factor VEGF expressions revealed that both these hypoxia responsive proteins were strongly increased in ccRCC with respect to controls. CA IX plasma concentration and CA activity were assessed in healthy volunteers and patients with benign kidney tumours and ccRCCs. CA IX expression levels were found strongly increased only in plasma from ccRCC subjects, whereas, CA activity was found similarly increased both in plasma from ccRCC and benign tumour patients, compared to healthy volunteers. These results show that the plasmatic level of CA IX, but not the CA total activity, can be considered a diagnostic marker of ccRCCs. Furthermore, as many reports exist relating CA IX inhibition to a better outcome to anticancer therapy in ccRCC, plasma levels of CA IX could be also predictive for response to therapy.  相似文献   

2.
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3?. There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.  相似文献   

3.
Abstract

Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.  相似文献   

4.
Targeting tumour associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII is now considered as a pertinent approach for the development of new cancer therapeutics against hypoxic tumours. In the last period, with the help of X-ray crystallography, much progress has been achieved for the drug-design of selective CA IX inhibitors, by considering the three main structural elements that govern both potency and selectivity, that is, a zinc binding group (ZBG), an organic scaffold, and one or more side chains substituting the scaffold. The use of sugar moiety in the structure of sulfonamide-based CA inhibitors (CAIs), has allowed the discovery of very potent CA IX inhibitors able to impair the growth of both primary tumors and metastases. The search for specific CA IX inhibitors by using the sugar approach has become an important research field, leading to sulfonamides, sulfamates, sulfamides and coumarins with excellent in vitro activity and relevant potency in vivo, in animal models of cancer. This paper will review the latest development in this hot topic.  相似文献   

5.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

6.
Many cancers cause malignant effusions. The presence of malignant cells in effusions has implications in diagnosis, tumour staging and prognosis. The detection of malignant cells currently presents a challenge for cytopathologists. New adjunctive methods are needed. Although the effusions provide excellent materials for molecular assay, the available molecular markers are extremely limited, which hinders its clinical application. MN/CA9 has proved to be a valuable marker in many cancers such as lung, breast, colon, kidney, etc. The present study was to evaluate MN/CA9 as a new molecular marker for the detection of cancer cells in pleural effusions. Seventy-one pleural effusions including 59 malignant effusions from patients with cancer, and 12 patients with benign diseases as a control, were subjected to RT-PCR for detection of MN/CA9 gene expression. MN/CA9 gene expression was detected in 53/59 (89.8%) pleural effusions from cancer patients (15/16 for breast cancers, 10/11 for lung cancers, 4/4 for ovary cancers, 2/3 for colon–rectal cancers, 5/6 for cancers of unknown site, 7/8 for mesothelioma and 10/11 for other cancers). Furthermore, MN/CA9 was positive in 13/18 (72.2%) of cytologically negative effusions of cancer patients. MN/CA9 was detected in only 1/12 (8.3%) effusions from the control patients (p<0.01). The sensitivity and specificity of MN/CA9 gene expression were, respectively, 89.8% and 91.7%. Our preliminary results suggest that MN/CA9 could be a potential marker for the detection of malignant cells in effusions. A large-scale study is needed to confirm these results.  相似文献   

7.
Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.  相似文献   

8.
Carbonic anhydrase IX (CA IX) is a recently validated target for the development of new cancer therapies. In this Letter we describe the synthesis and CA inhibition of a novel series of carbohydrate-based 1,5-disubstituted-1,2,3-triazole benzenesulfonamides. The key step of our synthesis is the regioselective Huisgen's 1,3-dipolar cycloaddition reaction (1,3-DCR) from carbohydrate azide substrates and 4-ethynylbenzenesulfonamide using a ruthenium-catalysed azide-alkyne cycloaddition (RuAAC). Our findings identified a number of triazole inhibitors (compounds 18, 19, 21-23, and 26) that block CA IX activity with inhibition constants less than 10 nM. One inhibitor (compound 17) possessed very good selectivity for CA IX over off-target CAs. These CA inhibitors have developmental potential to selectively target cancer cells, leading to cell death.  相似文献   

9.
Many cancers cause malignant effusions. The presence of malignant cells in effusions has implications in diagnosis, tumour staging and prognosis. The detection of malignant cells currently presents a challenge for cytopathologists. New adjunctive methods are needed. Although the effusions provide excellent materials for molecular assay, the available molecular markers are extremely limited, which hinders its clinical application. MN/CA9 has proved to be a valuable marker in many cancers such as lung, breast, colon, kidney, etc. The present study was to evaluate MN/CA9 as a new molecular marker for the detection of cancer cells in pleural effusions. Seventy-one pleural effusions including 59 malignant effusions from patients with cancer, and 12 patients with benign diseases as a control, were subjected to RT-PCR for detection of MN/CA9 gene expression. MN/CA9 gene expression was detected in 53/59 (89.8%) pleural effusions from cancer patients (15/16 for breast cancers, 10/11 for lung cancers, 4/4 for ovary cancers, 2/3 for colon-rectal cancers, 5/6 for cancers of unknown site, 7/8 for mesothelioma and 10/11 for other cancers). Furthermore, MN/CA9 was positive in 13/18 (72.2%) of cytologically negative effusions of cancer patients. MN/CA9 was detected in only 1/12 (8.3%) effusions from the control patients (p < 0.01). The sensitivity and specificity of MN/CA9 gene expression were, respectively, 89.8% and 91.7%. Our preliminary results suggest that MN/CA9 could be a potential marker for the detection of malignant cells in effusions. A large-scale study is needed to confirm these results.  相似文献   

10.
Isoform IX of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA IX, is a transmembrane protein involved in solid tumor acidification through the HIF-1α activation cascade. CA IX has a very high catalytic activity for the hydration of carbon dioxide to bicarbonate and protons, even at acidic pH values (of around 6.5), typical of solid, hypoxic tumors, which are largely unresponsive to classical chemo- and radiotherapy. Thus, CA IX is used as a marker of tumor hypoxia and as a prognostic factor for many human cancers. CA IX is involved in tumorigenesis through many pathways, such as pH regulation and cell adhesion control. The X-ray structure of the catalytic domain of CA IX has been recently reported, being shown that CA IX has a typical α-CA fold. However, the CA IX structure differs significantly from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the proteoglycan (PG) domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. As all mammalian CAs, CA IX is inhibited by several main classes of inhibitors, such as the inorganic anions, the sulfonamides and their bioisosteres (sulfamates, sulfamides, etc.), the phenols, and the coumarins. The mechanism of inhibition with all these classes of compounds is understood at the molecular level, but the sulfonamides and their congeners have important applications. It has been recently shown that both in vitro, in cell cultures, as well as in animals with transplanted tumors, CA IX inhibition with sulfonamides lead to a return of the extracellular pH to more normal values, which leads to a delay in tumor growth. As a consequence, CA IX represents a promising antitumor target for the development of anticancer agents with an alternative mechanism of action.  相似文献   

11.
HIF-1α regulated genes are mainly responsible for tumour resistance to radiation- and chemo-therapy. Among these genes, carbonic anhydrase isoform IX (CA9) is highly over expressed in many types of cancer especially in high grade brain cancer like Glioblastoma (GBM). Inhibition of the enzymatic activity by application of specific chemical CA9 inhibitor sulphonamides (CAI) like Acetazolamide (Aza.), the new sulfonamide derivative carbonic anhydrase inhibitor (SU.D2) or indirect inhibitors like the HIF-1α inhibitor Chetomin or molecular inhibitors like CA9-siRNA are leading to an inhibition of the functional role of CA9 during tumorigenesis. Human GBM cells were treated with in vitro hypoxia (1, 6, or 24 h at 0.1%, O2). Aza. application was at a range between 250 and 8000 nM and the HIF-1α inhibitor Chetomin at a concentration range of 150–500 nM. Cell culture plates were incubated for 24 h under hypoxia (0.1% O2). Further, CA9-siRNA constructs were transiently transfected into GBM cells exposed to extreme hypoxic aeration conditions. CA9 protein expression level was detectable in a cell-type specific manner under normoxic conditions. Whereas U87-MG exhibited a strong aerobic expression, U251 and U373 displayed moderate and GaMG very weak normoxic CA9 protein bands. Aza. as well as SU.D2 displayed inhibitory characteristics to hypoxia induced CA9 expression in the four GBM cell lines for 24 h of hypoxia (0.1% O2) at concentrations between 3500 and 8000 nM, on both the protein and mRNA level. Parallel experiments using CA9-siRNA confirmed these results. Application of 150–500 nM of the glycolysis inhibitor Chetomin under similar oxygenation conditions led to a sharply reduced expression of both CA IX protein and CA9 mRNA levels, indicating a clear glucose availability involvement for the hypoxic HIF-1α and CA9 expression in GBM cells. Hypoxia significantly influences the behaviour of human tumour cells by activation of genes involved in the adaptation to hypoxic stress. The main objective in malignant GBM therapy is either to eradicate the tumour or to convert it into a controlled, quiescent chronic disease. Aza., SU.D2, Chetomin or CA9-siRNA possesses functional CA9 inhibitory characteristics when applied against human cancers with hypoxic regions like GBM. They may be used as alternative or in conjunction with other direct inhibitors possessing similar functionality, thereby rendering them as potential optimal tools for the development of an optimized therapy in human brain cancer treatment.  相似文献   

12.
Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.  相似文献   

13.
Carbonic anhydrase type IX (CA IX) enzyme is mostly over expressed in different cancer cell lines and tumor tissues. Potent CA IX inhibitors can be effective for adjusting the pH imbalance in tumor cells. In the present work, we represented the successful application of high throughput virtual screening (HTVS) of large dataset from ZINC database included of ~7 million compounds to discover novel inhibitors of CA IX. HTVS and molecular docking were performed using consequence Glide/standard precision (SP), extra precision (XP) and induced fit docking (IFD) molecular docking protocols. For each compound, docking code calculates a set of low-energy poses and then exhaustively scans the binding pocket of the target with small compounds. Novel CA IX inhibitor candidates were suggested based on molecular modeling studies and a few of them were tested using in vitro analysis. These compounds were determined as good inhibitors against human CA IX target with Ki in the range of 0.85–1.58?μM. In order to predict the pharmaceutical properties of the selected compounds, ADME (absorption, distribution, metabolism and excretion) analysis was also carried out.  相似文献   

14.
Selective inhibition with sulphonamides of carbonic anhydrase (CA) IX reduces cell proliferation and induces apoptosis in human cancer cells. The effect on CA IX expression of seven previously synthesised sulphonamide inhibitors, with high affinity for CA IX, as well as their effect on the proliferation/apoptosis of cancer/normal cell lines was investigated. Two normal and three human cancer cell lines were used. Treatment resulted in dose- and time-dependent inhibition of the growth of various cancer cell lines. One compound showed remarkably high toxicity towards CA IX-positive HeLa cells. The mechanisms of apoptosis induction were determined with Annexin-V and AO/EB staining, cleaved caspases (caspase-3, caspase-8, caspase-9) and cleaved PARP activation, reactive oxygen species production (ROS), mitochondrial membrane potential (MMP), intracellular pH (pHi), extracellular pH (pHe), lactate level and cell cycle analysis. The autophagy induction mechanisms were also investigated. The modulation of apoptotic and autophagic genes (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin and LC3) was measured using real time PCR. The positive staining using γ-H2AX and AO/EB dye, showed increased cleaved caspase-3, caspase-8, caspase-9, increased ROS production, MMP and enhanced mRNA expression of apoptotic genes, suggesting that anticancer effects are also exerted through its apoptosis-inducing properties. Our results show that such sulphonamides might have the potential as new leads for detailed investigations against CA IX-positive cervical cancers.  相似文献   

15.
OBJECTIVES--To determine whether variations in the expression of tumour related antigens can predict the origin of tumours. DESIGN--Immunohistological study of tumour marker expression in primary adenocarcinomas and respective metastatic deposits. Antibodies to the following tumour markers were used: polymorphic epithelial mucin (NCRC-11 and SM3), carcinoembryonic antigen, carcinoembryonic antigen with non-specific antigen co-specificity, CA125, CA19.9, prostate specific antigens, and thyroglobulin. SETTING--Histopathology department of teaching hospital. SUBJECTS--100 pathology sections of metastatic adenocarcinoma and their related primary tumours. MAIN OUTCOME MEASURES--Concordance of reactivity between primary and metastatic tumours. Reactivity profiles of tumour sites. RESULTS--The correct primary site of origin was predicted in 70% (33/47) of tumours in men and 54% (27/43) tumours in women with antibodies SM3, 288, CA19.9, CA125, and PSA (men only). Specificities ranged from 68% for breast tumour to 98% for prostate tumour. CONCLUSION--Use of tumour markers in patients presenting with metastatic adenocarcinoma of unknown origin can help localise the probable primary sites and reduce the need for extensive and expensive imaging techniques.  相似文献   

16.
The hypoxic tumour microenvironment of solid tumours represents an important starting point for modulating progression and metastatic spread. Carbonic anhydrase IX (CAIX) is a known HIF-1α-dependent key player in maintaining cell pH conditions under hypoxia. We show that CAIX is strongly expressed in esophageal carcinoma tissues. We hypothesize that a moderate CAIX expression facilitates metastases and thereby worsens prognosis. Selective inhibition of CAIX by specific CAIX inhibitors and a CAIX knockdown effectively inhibit proliferation and migration in vitro. In the orthotopic esophageal carcinoma model, the humanized HER2 antibody trastuzumab down-regulates CAIX, possibly through CAIX’s linkage with HER2 in the hypoxic microenvironment. Our results show CAIX to be an essential part of the tumour microenvironment and a possible master regulator of tumour progression. This makes CAIX a highly effective and feasible therapeutic target for selective cancer treatment.  相似文献   

17.
BackgroundHuman carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding.MethodsThe observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry.ResultsThe pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was − 24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM.ConclusionsThe intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship.General significanceIt is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations.  相似文献   

18.
Carbonic anhydrases (EC 4.2.1.1) catalyse the reversible hydration of CO2 into bicarbonate and protons. As a hypoxia-sensitive and tumour-associated isoform, isoform CA IX, is significantly overexpressed in various malignancies, being a validated target for new anticancer/antimetastatic drugs. A multitude of studies has shown that CA IX inhibition decreases cancer cell proliferation and metastasis through pHe/pHi modulation and enhancement of ferroptosis among others. Numerous studies demonstrated increased efficacy of cytotoxic drugs combined with CA inhibitors (CAIs) in various cancer types. We tested the inhibitory effect of boric acid (BA), an inorganic Lewis acid, on CA IX as well as other isoforms (CA I, II, and XII). BA acted as a millimolar in vitro CAI, decreased proliferation of two cancer cell lines, although not strong correlations between the in vitro inhibition and in vivo effects were observed. The mechanism of antiproliferative action of BA should be investigated in more detail.  相似文献   

19.
N-Acetylglucosamine 6-O-sulfotransferase-2 (GlcNAc6ST2) is ectopically expressed in ovarian mucinous and clear cell adenocarcinoma [Kanoh et al., Glycoconj J 23:453–460, 2006]. Here we studied whether GlcNAc6ST2 protein can be detected in sera from patients with gynecological cancers and could serve as a tumor marker. First, we created a monoclonal antibody and polyclonal antiserum against GlcNAc6ST2. These antibodies were specific for GlcNAc6ST2, as shown by Western blot analysis and immunoprecipitation. Using these antibodies, we constructed a sandwich ELISA method for detecting GlcNAc6ST2 in the serum. GlcNAc6ST2 provided lower positive rates for ovarian cancer than CA125, but higher positive rates for uterine cervical and corpus cancer than SCC antigens and CA125, respectively. A significantly higher percentage of stage I uterine cervical and corpus cancers were positive for GlcNAc6ST2 than for SCC antigens and CA125, respectively. GlcNAc6ST2 could therefore be a good serological marker for detecting early-stage uterine cervical and corpus cancers.  相似文献   

20.
A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84–702 nM against hCA I, of 0.41–288 nM against hCA II and of 5.6–29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号